Transmission delay p的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列地圖、推薦、景點和餐廳等資訊懶人包

Transmission delay p的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦World Health Organization (COR)寫的 Guidelines on Hepatitis B and C Testing: February 2017 和Singh, Hema/ R., Chandini/ Jha, Rakesh Mohan的 Parallel-fed Planar Dipole Antenna Arrays for Low-observable Platforms都 可以從中找到所需的評價。

這兩本書分別來自 和所出版 。

國立陽明交通大學 土木工程系所 袁宇秉所指導 龔慕萱的 光敏電阻結合光纖之傳感器在結構與土木工程的應用 (2021),提出Transmission delay p關鍵因素是什麼,來自於光敏電阻、樹莓派、光導纖維、結構健康檢測、光纖準直儀。

而第二篇論文中原大學 電子工程學系 陳淳杰所指導 徐志豪的 一個十位元每秒兩千萬次取樣帶冗餘位逐漸趨近式類比數位轉換器 (2021),提出因為有 逐漸趨近式類比數位轉換器、分段式電容陣列、帶冗餘位演算法的重點而找出了 Transmission delay p的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Transmission delay p,大家也想知道這些:

Guidelines on Hepatitis B and C Testing: February 2017

A PHP Error was encountered

Severity: Warning

Message: file_put_contents(/var/www/html/prints/public/images/books_new/F01/420/06/F014206433.jpg): failed to open stream: Permission denied

Filename: helpers/global_helper.php

Line Number: 140

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 140
Function: file_put_contents

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: getimagesize(/var/www/html/prints/public/images/books_new/F01/420/06/F014206433.jpg): failed to open stream: No such file or directory

Filename: helpers/global_helper.php

Line Number: 62

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 62
Function: getimagesize

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 64

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 64
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 66

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 66
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 68

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 68
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 144
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

為了解決Transmission delay p的問題,作者World Health Organization (COR) 這樣論述:

Testing and diagnosis of hepatitis B (HBV) and C (HCV) infection is the gateway for access to both prevention and treatment services, and is a crucial component of an effective response to the hepatitis epidemic. Early identification of persons with chronic HBV or HCV infection enables them to recei

ve the necessary care and treatment to prevent or delay progression of liver disease. Testing also provides an opportunity to link people to interventions to reduce transmission, through counselling on risk behaviors and provision of prevention commodities (such as sterile needles and syringes) and

hepatitis B vaccination.These are the first WHO guidelines on testing for chronic HBV and HCV infection and complement published guidance by WHO on the prevention, care and treatment of chronic hepatitis C and hepatitis B infection. These guidelines outline the public health approach to strengthenin

g and expanding current testing practices for HBV and HCV, and are intended for use across age groups and populations.

光敏電阻結合光纖之傳感器在結構與土木工程的應用

為了解決Transmission delay p的問題,作者龔慕萱 這樣論述:

近年來,隨著各種結構物的增加,土木研究方向逐漸由新建結構物轉變為對舊有結構物的加固與監測,也因此結構健康監測(Structural Health Monitoring, SHM)開始受到重視,各種不同的傳感器也開始受到研究。其中光纖作為傳感器擁有體積小、傳輸速度快、監控範圍大、傳輸距離遠、抗腐蝕與抵抗電磁干擾等優勢,並且在測量應變、應力、溫度與各種結構物之物理變化皆有高敏感度與準確性,所以被廣泛應用於各種結構檢測之中。也因光纖傳感器擁有強大的測量效果,能搭配光纖傳感器的測量工具也大量被研究。本研究選用光敏電阻結合光纖作為一低成本的光纖傳感器,直接測量通過光纖之光強度變化,並使用樹莓派(Ras

pberry Pi)作為此光敏電阻傳感器之接收端。實驗方面從水質濁度監測試驗、光纖彎曲監測試驗以及震動試驗來判斷光敏電阻作為傳感器的精確度與可行性,同時進行結果分析判斷未來改善之方向。試驗結果顯示,此光敏電阻傳感器在光纖彎曲時或是進入光纖之光強度改變時可以有效並準確測量出光訊號的差異,然而在光強度高頻率改變的測量環境下,可能因為光敏電阻的時延性導致精確度下降,因此此傳感器可能較不適合使用於高頻率環境之測量。

Parallel-fed Planar Dipole Antenna Arrays for Low-observable Platforms

為了解決Transmission delay p的問題,作者Singh, Hema/ R., Chandini/ Jha, Rakesh Mohan 這樣論述:

This book focuses on determination of scattering of parallel-fed planar dipole arrays in terms of reflection and transmission coefficients at different levels of the array system. In aerospace vehicles, the phased arrays are often in planar configuration. The radar cross section (RCS) of the vehicle

is mainly due to its structure and the antennas mounted over it. There can be situation when the signatures due to antennas dominate over the structural RCS of the platform. This necessitates the study towards the reduction and control of antenna/ array RCS. The planar dipole array is considered as

a stacked linear dipole array. A systematic, step-by-step approach is used to determine the RCS pattern including the finite dimensions of dipole antenna elements. The mutual impedance between the dipole elements for planar configuration is determined. The scattering till second-level of couplers i

n parallel feed network is taken into account. The phase shifters are modelled as delay line. All the couplers in the feed network are assumed to be four port devices. It is shown that the array RCS can be reduced considerably for a low observable platform by an optimization of array design paramete

rs even in the presence of mutual coupling. This book presents a systematic step-by-step analytical formulation for RCS of planar half-wavelength centre-fed dipole arrays through various schematics and illustrations. The analytical description and analysis provided in this book should be useful for

students, researchers, and design engineers of phased arrays. Dr. Hema Singh is currently working as Senior Scientist in Centre for Electromagnetics of CSIR-National Aerospace Laboratories, Bangalore, India. Earlier, she was Lecturer in EEE, BITS, Pilani, India during 2001-2004. She obtained her P

h.D. degree in Electronics Engineering from IIT-BHU, Varanasi India in 2000. Her active area of research is Computational Electromagnetics for Aerospace Applications. More specifically, the topics she has contributed to, are GTD/UTD, EM analysis of propagation in an indoor environment, Phased Arrays

, Conformal Antennas, Radar Cross Section (RCS) Studies including Active RCS Reduction. She received Best Woman Scientist Award in CSIR-NAL, Bangalore for period of 2007-2008 for her contribution in area of phased antenna array, adaptive arrays, and active RCS reduction. Dr. Singh has co-authored on

e book, one book chapter, and over 120 scientific research papers and technical reports.Ms. Chandini R. obtained her BE (ECE) degree from Visvesvaraya Technological University, Karnataka. She was a Project Engineer at the Centre for Electromagnetics of CSIR-National Aerospace Laboratories, Bangalore

, where she worked on RCS studies and conformal arrays.Dr. Rakesh Mohan Jha was Chief Scientist & Head, Centre for Electromagnetics, CSIR-National Aero space Laboratories, Bangalore. Dr. Jha obtained a dual degree in BE (Hons.) EEE and MSc (Hons.) Physics from BITS, Pilani (Raj.) India, in 1982. He

obtained his Ph.D. (Engg.) degree from Department of Aerospace Engineering of Indian Institute of Science, Bangalore in 1989, in the area of computational electromagnetics for aerospace applications. Dr. Jha was a SERC (UK) Visiting Post-Doctoral Research Fellow at University of Oxford, Department o

f Engineering Science in 1991. He worked as an Alexander von Humboldt Fellow at the Institute for High-Frequency Techniques and Electronics of the University of Karlsruhe, Germany (1992-1993, 1997). He was awarded the Sir C.V. Raman Award for Aerospace Engineering for the Year 1999. Dr. Jha was elec

ted Fellow of INAE in 2010, for his contributions to the EM Applications to Aerospace Engineering. He was also the Fellow of IETE and Distinguished Fellow of ICCES. Dr. Jha has authored or co-authored several books, and more than five hundred scientific research papers and technical reports. He pass

ed away during the production of this book of a cardiac arrest.pace; font-size: 13.3333330154419px;">

一個十位元每秒兩千萬次取樣帶冗餘位逐漸趨近式類比數位轉換器

為了解決Transmission delay p的問題,作者徐志豪 這樣論述:

如今電子產品除了要效能好,亦追求低功耗與輕薄短小,由於半導體製程技術的進步,帶動了積體電路設計的成長,許多低功耗的晶片得以實現,在眾多類比數位轉換器中,逐漸趨近式(Successive-Approximation)由於大部分元件皆由數位邏輯電路所構成,且整個電路僅需一組比較器即可,大幅地降低了資料轉換所需的功耗。本論文完整製作一個10-bit 20MS/s SAR ADC,架構採用分段式電容陣列數位類比轉換器,使用TSMC 0.18um 1P6M CMOS製程,電源供應1.8V,輸入頻率為1.97265625MHz進行模擬,訊號雜訊與失真比(SNDR) 60.71 dB,有效位元數(ENOB

) 9.79-bit,功耗0.92 mW,品質因數(FOM) 52f J/conversion-step,核心晶片佈局面積0.31*0.21〖mm〗^2,晶片總佈局面積1.163*1.169〖mm〗^2。最後設計規格同樣為10-bit 20MS/s SAR ADC,架構改成帶冗餘位演算法,將MSB電容拆解並分配至原電容陣列中,達到電容切換速度的提升,並在栓鎖電路前加上一級前置放大器,用以降低誤差,提高比較器的精準度。使用相同製程與輸入頻率進行模擬,訊號雜訊與失真比(SNDR) 61.93 dB,有效位元數(ENOB) 9.99-bit,功耗3.024mW,品質因數(FOM) 148.7f J/

conversion-step。關鍵字:逐漸趨近式類比數位轉換器;分段式電容陣列;帶冗餘位演算法