石墨烯公司的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列地圖、推薦、景點和餐廳等資訊懶人包

石墨烯公司的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦StephanieMehta寫的 領先未來的變革設計:翻轉人類工作與生活框架,企業狂漲百倍價值的絕世設計 和科學少年編輯部的 科學少年學習誌:科學閱讀素養套書 1都 可以從中找到所需的評價。

另外網站石墨烯概念股逆勢上漲多家上市公司漲幅較大 - Zi 字媒體也說明:金投股票網(http://stock.cngold.org/)07月04日訊,7月4日消息,今日早盤,石墨烯概念股走強,截至發稿,東旭光電漲超7%,珈偉股份、杭電股份漲超4% ...

這兩本書分別來自方言文化 和遠流所出版 。

明志科技大學 化學工程系碩士班 楊純誠、施正元所指導 林冠吟的 添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料 (2021),提出石墨烯公司關鍵因素是什麼,來自於磷酸鋰鐵、溶膠凝膠法、多孔氧化石墨烯、氣相生長碳纖維、鋰離子擴散係數、電子導電度、原位X-ray繞射光譜儀、原位顯微拉曼光譜儀。

而第二篇論文國立高雄師範大學 物理學系 邱志偉所指導 曾晧然的 溫度對單層碳奈米管中電子分佈的影響 (2021),提出因為有 碳奈米管、奈米碳管、碳微管、單層、電子分佈、溫度的重點而找出了 石墨烯公司的解答。

最後網站石墨烯概念股龙头 - 同花顺财经則補充:石墨烯 概念股龙头包括智慧能源、悦达投资、宝泰隆、长信科技、维科精华、四川路桥等。 ... 华丽家族:公司旗下的宁波墨西和重庆墨希主要致力于石墨烯微.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了石墨烯公司,大家也想知道這些:

領先未來的變革設計:翻轉人類工作與生活框架,企業狂漲百倍價值的絕世設計

為了解決石墨烯公司的問題,作者StephanieMehta 這樣論述:

Fast Company美國權威商業媒體, 邀你見證經典品牌,用設計描繪未來! 價值30億IDEO設計心智圖,手稿首度公開! 蘋果股價增長近百倍的設計法則?獨一無二的關鍵細節! 外太空能看見的藝術品,如何利用公共裝置改變世界? 無限靈感的亞馬遜總部,3顆球體組成巨型熱帶雨林!     ★用設計影響力,打破商業語言陳規★   數位科技為商業與職場帶來騷動與變革,   而在當今經濟環境,設計儼然成為開拓業務的關鍵角色,   從時尚到建築、辦公室規劃、數位處理,   再到手作工藝,設計在所有業務中佔據著重要的位置。   Fast Company的編輯重點,

  是關注技術創新、領導力、改變世界的想法、創造力與設計思維,   創刊至今,   都在向世人說明一件事:「設計能強化商業,使其變得更具競爭力、收益更高」。     本書梳理25年以來的龐大報導資料庫,   聚焦在將設計推向商界對話中心的人物、公司、潮流,   探討涵蓋矽谷科技、家庭生活、品牌行銷、城市開發、   零售業至公益設計等領域的設計影響力。例如:   ►Google極機密實驗大樓,開發提升人類體驗的應用裝置。   ►核技術打造的吹風機,用智能家電開啟智慧宅永續佈局。   ►星巴克商標的極秘密,為何後來僅留下海妖特寫鏡頭?   ►用設計翻

轉城市新風貌,創意又引人熱議的紐約高架公園。   ►重塑零售業,Nike用數位革命創造顧客黏著度。   ►普立茲克建築獎首位非裔建築師,改變文盲99%比例的家鄉。     ★矚目經典品牌,見證改變的設計事件★   若想了解設計是如何從根本改變、   如何讓商界與人類的生活變得更好,那絕對不能錯過本書。   書中以全彩豐富照片回顧經典品牌的設計思考、溝通經驗與精彩作品,   收錄從蘋果、Airbnb、Google、特斯拉等全球最具創意的公司,   認識其中「以人為本」的品牌特色,如何在服務中精準掌握「人」的使用需求,   帶著你一窺設計案例的時空背景、歷史

目的至公共議題,以及啟發靈感的觀察洞見。     無論是商業領袖、設計教育工作者、產品設計人員,   本書都將帶你打破思考框架、提升產品設計的創作想像,是絕對必備的「創新設計經典聖經」!   本書特色     ◎精選77篇設計代表性案例、21篇創新大賞,詳述其時空背景與設計影響力。   ◎涵蓋矽谷科技、家庭生活、品牌行銷、城市開發、零售業至公益設計等領域,層面探討廣泛且深入淺出。   ◎幫助打破思考框架、提升產品設計的創作想像。   專業推薦     (依姓氏筆畫排列)   水越設計、都市酵母總管/周育如   實踐大學工業產品設計學系助理

教授/曾熙凱   5% Design Action社會設計平台創辦人/楊振甫   中英雙語節目主持人/路怡珍   銘傳大學建築學系副教授/褚瑞基   台灣科技大學資訊管理系專任特聘教授/盧希鵬   Logitech羅技電子亞太區設計總監/蘇俊瑋   國立陽明交通大學建築研究所教授/龔書章

石墨烯公司進入發燒排行的影片

量子科技是全球科研的新興領域,主要包含量子電腦和量子運算等技術研發在內,對於資安、金融和國防等領域,有重要影響力。目前國際科技大廠IBM、Google等公司都相繼投入其中,而台灣也不例外,成大團隊最新研究,把「石墨烯」材料轉變成具備量子特性的電子元件,可望成為量子傳輸和相關科研領域的新助力。

詳細新聞內容請見【公視新聞網】 https://news.pts.org.tw/article/519584

-
由台灣公共電視新聞部製播,提供每日正確、即時的新聞內容及多元觀點。

■ 按讚【公視新聞網FB】https://www.facebook.com/pnnpts
■ 訂閱【公視新聞網IG】https://www.instagram.com/pts.news/
■ 追蹤【公視新聞網TG】https://t.me/PTS_TW_NEWS

#公視新聞 #即時新聞
-
看更多:
■【P sharp新聞實驗室】全媒體新聞實驗,提供新一代的新聞資訊服務。 (https://newslab.pts.org.tw
■【PNN公視新聞議題中心】聚焦台灣土地環境、勞工司法、族群及平權等重要議題。 (https://pnn.pts.org.tw

添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料

為了解決石墨烯公司的問題,作者林冠吟 這樣論述:

目錄明志科技大學碩士學位論文口試委員審定書 i誌謝 ii摘要 iiiAbstract v目錄 viii圖目錄 xi表目錄 xvii第一章 緒論 11.1 前言 11.2 研究動機 2第二章 文獻回顧 42.1 鋰離子二次電池之發展 42.1.1鋰離子二次電池反應機制及熱失控 52.2 陰極材料(Cathode materials) 82.3 陽極材料(Anode) 102.4 隔離膜(Separator) 122.5 電解質(Electrolyte) 142.6 磷酸鋰鐵(LiFePO4)的基本特性 162.7 磷酸鋰鐵陰極材料改質方法 182.7.

1 碳層包覆 182.7.2 添加導電/包覆導電的碳材 212.7.3 縮小粒徑 242.8 磷酸鋰鐵材料之合成方法 262.8.1 微波法(Microwave method) 262.8.2 溶膠凝膠法(Sol-gel method) 282.8.3 水熱法(Hydrothermal method) 312.8.4 噴霧乾燥法(Spray-drying method) 35第三章 實驗方法 393.1 實驗藥品與儀器 393.1.1 實驗儀器與設備 403.2 LFP/C複合陰極材料之製備方法 413.2.1磷酸鋰鐵/碳(LFP/C)製備方法 413.2.2磷酸鋰鐵

/碳/多孔氧化石墨烯(LFP/C/PGO)製備方法 423.2.3磷酸鋰鐵/碳/氣相生長碳纖維(LFP/C/VGCF)製備方法 443.3 LFP/C之陰極複合材料之物性、化性分析 463.3.1磷酸鋰鐵/碳(LFP/C)陰極材料之物化性分析方法 473.3.2磷酸鋰鐵/碳(LFP/C)陰極材料之化學成份分析 563.4 磷酸鋰鐵/碳(LFP/C)陰極材料之電化學性質分析 573.4.1電極片製備 573.4.2鈕扣型鋰離子半電池封裝 593.4.3電池充/放電穩定度測試 603.4.4循環伏安法測試 613.4.5交流阻抗測試 623.4.6恆電流間歇滴定法測試 64

第四章 結果與討論 654.1 磷酸鋰鐵/碳(LFP/C)之材料晶相結構分析 654.1.1原位-晶相結構分析 674.2 磷酸鋰鐵/碳(LiFePO4/C)之表面形態分析 724.2.1 磷酸鋰鐵/碳(LFP/C)之材料化學組成元素分析 764.2.2 磷酸鋰鐵/碳(LFP/C)之顯微結構微分析 794.3 磷酸鋰鐵/碳(LFP/C)之碳層結構分析 844.3.1原位-顯微拉曼光譜分析 864.4 磷酸鋰鐵/碳(LFP/C)之比表面積分析(BET) 884.5磷酸鋰鐵/碳(LFP/C)之粉末電子導電度分析 914.6 磷酸鋰鐵/碳(LFP/C)之殘碳量分析 924.7

磷酸鋰鐵/碳(LFP/C)電化學分析法 934.7.1 磷酸鋰鐵/碳(LFP/C)之低電流速率之充放電分析 934.7.2 磷酸鋰鐵/碳(LFP/C)之高電流速率之充放電分析 994.7.3 磷酸鋰鐵/碳(LFP/C)之長期循換穩定性分析 1044.8 磷酸鋰鐵/碳(LFP /C)循環伏安分析 1184.8.1磷酸鋰鐵/碳(LFP/C)電化學微分曲線分析 1204.9 磷酸鋰鐵/碳(LFP/C)交流阻抗及鋰離子擴散係數分析 1244.9.1磷酸鋰鐵/碳(LFP/C)恆電流間歇滴定法測試 129第五章 結論 135參考文獻 137 圖目錄圖 1、鋰離子二次電池充放電原理示意圖

[12]。 5圖 2、1992年至2020年鋰離子電池的世界市場價值[15]。 6圖 3、鋰離子二次電池熱失控三個階段示意圖[19]。 7圖 4、陰極材料中主要分為三種不同的晶體結構[28]。 9圖 5、鋰離子電池之陽極材料分類圖。 10圖 6、鋰離子電池之陽極材料特性。 11圖 7、各種製造隔離膜的方法示意圖[39]。 12圖 8、磷酸鋰鐵(LiFePO4)與磷酸鐵(FePO4)晶格結構圖[53]。 17圖 9、LiFePO4和LiFePO4/C複合材料的SEM圖。 18圖 10、LiFePO4和LiFePO4/C複合材料的SEM圖。 19圖 11、未塗覆TWEEN 80

的LiFePO4 (a). SEM圖 (b). TEM和HRTEM圖;塗覆了TWEEN 80的LiFePO4 (c). TEM和 (d). HRTEM圖。 20圖 12、LFP–CNT–G組合的網絡結構示意圖[58]。 21圖 13、SEM圖 (a). 原始LFP (b). LFP-CNT複合材料 (c). LFP-G複合材料 (d). LFP-CNT-G複合材料;TEM圖 (e). 原始LFP (f). LFP–CNT複合材料 (g). LFP–G複合材料 (h). LFP–CNT–G複合材料。 22圖 14、(a) VC/LFP及C/LFP的放電曲線圖、(b) VC/LFP及C/LF

P循環比較圖。 22圖 15、VC/LFP和C/LFP的EIS阻抗曲線比較圖。 23圖 16、$VGCF的製造過程示意圖[60]。 23圖 17、LFP/C和LFP/C-Tween分析(a). XRD圖譜,(b). 粒徑分佈,(c).和(d). SEM圖,(e)和(f). TEM圖。 25圖 18、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10C不同電流速率下的充電/放電曲線。 27圖 19、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10 C的各種電流速率下的充電/放電循環性能圖。 27

圖 20、SEM圖(a). HY-LiFePO4 (b). HY-SO-LiFePO4。 29圖 21、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG樣品的SEM和TEM圖。 30圖 22、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG複合材料在不同速率下的充電/放電曲線和循環性能。 30圖 23、LiFePO4/C核-殼複合材料(a). XRD圖, (b). SEM圖, (c). TEM圖, (d). HRTEM圖。 32圖 24、SEM圖(a). 3DG, (b). FP, (c)、(d). FP/3DG, (e). LFP/C,

(f). LFP/3DG /C。 33圖 25、LFP/C和LFP/3DG/C,(a). 0.2C、(b). 1C時的循環性能曲線和庫侖效率。 34圖 26、LFPO/rGO複合材料(a)~(c). SEM圖像,(d)~(f). TEM圖像。 34圖 27、SEM圖(a). Hy-LFP/C (b). Hy-LFP/GO/C (c). SP-LFP/GO/C和(d). SP-LFP/PGO/C。 36圖 28、(a). Hy-LFP/C, (b). SP-LFP/GO/C, (c). SP-LFP/PGO/C複合材料在0.2~10C時的充放電曲線, (d). LFP複合材料的速率能力曲

線圖。 36圖 29、具有不同NC層含量的LiFePO4的SEM圖(a).0 wt. %NC (b).2 wt. %NC (c).5 wt. %NC (d).10 wt. %NC。 37圖 30、HRTEM圖(a).LFP/C, (b).LFP/C/CNT, (c).LFP/C/G, (d).LFP/C/G/CNT。 38圖 31、LiFePO4/C陰極材料之流程示意圖。 45圖 32、LiFePO4/C陰極複合材料的各性質檢測項目之流程圖。 46圖 33、布拉格表面衍射示意圖。 47圖 34、X-ray繞射分析儀(Bruker D2 Phaser)。 48圖 35、原位繞射分析

光譜儀組件。 49圖 36、掃描式電子顯微鏡(Hitachi S-2600H)圖。 50圖 37、高解析穿透式電子顯微鏡(JEOL JEM2100)。 51圖 38、顯微拉曼光譜儀(Confocal micro-Renishaw)。 52圖 39、原位顯為拉曼分析光譜儀組件。 53圖 40、比表面積分析儀。 54圖 41、將錠片夾入自製夾具之示意圖。 55圖 42、元素分析儀(Thermo Flash 2000)。 56圖 43、LiFePO4/C複合陰極材料電極片製備之流程圖。 58圖 44、CR2032鈕扣型半電池封裝示意圖。 59圖 45、佳優(BAT-750B)電池

測試儀。 60圖 46、恆電位電池測試儀(MetrohmAutolab PGST AT302N)圖。 61圖 47、AC交流阻抗測試圖譜(Nyquist plot)示意圖。 62圖 48、BioLogic BCS-805電池測試儀。 64圖 49、添加不同導電碳材之陰極複合材料XRD分析圖譜。 66圖 50、(a) LFP/C、(b) LFP/C/VGCF電極在充放電1次循環下的In-situ XRD分析圖。 69圖 51、LFP/C電極在不同範圍之In-situ XRD分析圖。 70圖 52、LFP/C/VGCF電極在不同範圍之In-situ XRD分析圖。 70圖 53、在

In-situ XRD充放電過程中LFP相的比例圖。 71圖 54、PGO之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 55、VGCF之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 56、LFP/C之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 57、LFP/C/PGO之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 58、LFP/C/VGCF之SEM表面形貌圖: (a)

.、(b). 在5kx、(c).、(d). 在10kx。 75圖 59、LFP/C樣品EDS元素mapping分析圖。 76圖 60、LFP/C樣品EDS元素分析光譜圖。 76圖 61、LFP/C/PGO樣品EDS元素mapping分析圖。 77圖 62、LFP/C/PGO樣品EDS元素分析光譜圖。 77圖 63、LFP/C/VGCF樣品EDS元素mapping分析圖。 78圖 64、LFP/C/VGCF樣品EDS元素分析光譜圖。 78圖 65、自製PGO添加劑在HR-TEM之分析圖。 80圖 66、市售VGCF添加劑在HR-TEM之分析圖。 80圖 67、LFP/C粉體在H

R-TEM之分析圖。 81圖 68、LFP/C/PGO粉體在HR-TEM之分析圖。 82圖 69、LFP/C/VGCF粉體在HR-TEM之分析圖。 83圖 70、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果圖。 85圖 71、LFP/C在不同範圍之In-situ micro-Raman分析圖。 87圖 72、LFP/C/VGCF在不同範圍之In-situ micro-Raman分析圖。 87圖 73、LFP/C材料之BET比表面積分析圖。 89圖 74、LFP/C/PGO材料之BET比表面積分析圖。 89圖 75、LFP/C/VGCF材料之BET比表面積分析圖。 9

0圖 76、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量曲線圖。 94圖 77、LFP/C在0.1C/0.1C充放電速率活化階段電性曲線圖。 95圖 78、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性曲線圖。 96圖 79、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段階段電性曲線圖。 97圖 80、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化曲線圖。 98圖 81、LFP/C在0.2C/0.2C-10C充放電速率電性曲線圖。 100圖 82、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性曲線圖

。 101圖 83、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性曲線圖。 102圖 84、添加不同導電碳材在0.2C/0.2-10C速率電性曲線圖。 103圖 85、LFP/C在0.1C/0.1C充放電速率30 cycles電性曲線圖。 106圖 86、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性曲線圖。 107圖 87、LFP/C/VGCF在0.1C/0.1C充放電速率30 cycles電性曲線圖。 108圖 88、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性曲線圖。 109圖 89、LFP/C在1

C/1C充放電速率100 cycles之電性曲線圖。 110圖 90、LFP/C/PGO在1C/1C充放電速率100 cycles之電性曲線圖。 111圖 91、LFP/C/VGCF在1C/1C充放電速率下100 cycles之電性曲線圖。 112圖 92、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性曲線圖。 113圖 93、LFP/C在1C/10C充放電速率下100 cycles之電性曲線圖。 114圖 94、LFP/C/PGO在1C/10C充放電速率下100 cycles之電性曲線圖。 115圖 95、LFP/C/VGCF在1C/10C充放電速率下

100 cycles之電性曲線圖。 116圖 96、添加不同導電碳材在1C/10C充放電速率100 cycles之電性曲線圖。 117圖 97、LFP/C添加不同導電碳材之CV分析圖。 119圖 98、LFP/C樣品之電化學微分曲線分析。 121圖 99、LFP/C/VGCF樣品之電化學微分曲線分析。 122圖 100、LFP/C樣品添加不同導電碳材之電化學微分曲線分析。 123圖 101、等效電路圖模組圖[112]。 125圖 102、在0.1C/0.1C充放5次循環後,不同導電碳材製備LFP/C樣品:(a). EIS阻抗比較圖、(b).鋰離子擴散係數比較圖。 126圖 10

3、在0.1C/0.1C充放30次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 127圖 104、在1C/1C充放100次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 128圖 105、LFP/C單次步驟充放電曲線圖(a) charge;(b) discharge。 132圖 106、LFP/C之V vs.τ1/2分析圖。 132圖 107、LFP/C之GITT充放電曲線圖。 133圖 108、LFP/C/VGCF之GITT充放電曲線圖。 133圖 109、GITT單次步驟比

較(a) charge、(b) discharge。 134圖 110、GITT之充電分析圖。 134 表目錄表 1、鋰離子電池之陰極材料的特性比較分析表 9表 2、鋰離子電池常用有機溶劑之特性比較 15表 3、LiFePO4與FePO4之晶格參數 17表 4、實驗藥品 39表 5、實驗儀器與設備 40表 6、充放電條件計算表 60表 7、方程式中符號及單位 63表 8、添加不同導電碳材之陰極複合材料XRD晶相比較表 66表 9、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果 85表 10、LFP/C、LFP/C/PGO、LFP/C/VGCF之比表面積分析結果

88表 11、LFP/C、LFP/C/PGO、LFP/C/VGCF之粉體電子導電度結果分析 91表 12、添加不同導電碳材之陰極複合材料之殘碳含量分析 92表 13、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量比較 94表 14、LFP/C在0.1C/0.1C充放電速率活化階段電性比較 95表 15、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性比較 96表 16、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段電性比較 97表 17、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化比較 98表 18、LFP/C在

0.2C/0.2C-10C充放電速率電性比較 100表 19、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性比較 101表 20、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性比較 102表 21、添加不同導電碳材在0.2C/0.2-10C速率電性比較表 103表 22、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性比較表 107表 23、LFP/C/VGCF在0.1C/0.1C充放電速率下30 cycles電性比較表 108表 24、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性比較表 10

9表 25、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性比較表 113表 26、添加不同導電碳材在1C/10C充放電速率100 cycles之電性比較表 117表 27、LFP/C添加不同導電碳材之CV分析結果 119表 28、LFP/C樣品之電化學微分曲線分析表 121表 29、LFP/C/VGCF樣品之電化學微分曲線分析表 122表 30、LFP/C樣品添加不同導電碳材之電化學微分曲線分析 123表 31、在0.1C/0.1C充放5次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 126表 32、在0.1C/0.

1C充放30次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 127表 33、在1C/1C充放100次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 128表 34、鋰離子的擴散係數方程式中符號及單位 130

科學少年學習誌:科學閱讀素養套書 1

為了解決石墨烯公司的問題,作者科學少年編輯部 這樣論述:

完勝會考‧自主學習的最佳STEM讀本 跨科學習、因應會考、融入課綱、延伸評量 《科學少年》團隊精選文章,學校課程延伸評量!   2019年教育部於會考後的記者會表示:長文試題就考閱讀素養。去年的國中會考,考生共需閱讀高達4萬4千多個字,其中自然科居然僅次於國文科,只少了565個字。108課綱強調跨領域的學習,教育我們的孩子所應具備的知識、能力與態度,培養他們適應現在的生活及未來挑戰。因應新課綱的學習,《科學少年》推出了全新學習誌《科學閱讀素養》,幫助同學跨科強化科學與閱讀素養。   為了讓孩子閱讀《科學少年》雜誌文章與學校的課程學習更直接連結,每期均由全臺線上國中自然科老師協助撰寫學習

單,本書將《科學少年》雜誌內各科相關重點篇章及學習單彙集起來,可以讓孩子做為自然科課外閱讀教材,並方便不同領域教師授課使用。     全套三冊包含:   ★ 生物篇:是好醣還是壞醣?、小種子大世界 、種子的旅行 、大地的寶藏——珍貴卻不昂貴的化石、你吃的是植物的生殖器官嗎?、血液裡的祕密 、昆蟲終結者──肉食植物   ★ 理化篇:聰明玩「油」戲 、測速照相:再快都抓得住! 、好吃又好玩:彩色涼麵 、家庭用電小學堂 、夢幻漸層飲品、光影調色盤──彩色影子 、讓電池Level Up──石墨烯 、熱情繽紛──奇幻的熱致變色   ★ 地科篇:你問我海底有多深?、斗轉星移、臺灣島的前世今生 、氣象觀

測法寶大公開、四季圓舞曲、寒武紀大爆發的見證:澄江生物群、木星瞪著暴風眼   套書特色   跨科學習:幫助同學強化科學與閱讀素養,培養知識及學習能力與態度。   因應會考:長文試題內容漸為趨勢,此為最好的課外科學閱讀練習選擇。   融入課綱:匯整第一線自然科教師相關教學經驗,精選《科學少年》文章並搭配108課綱。   延伸評量:每篇文章均附有「補充學習單」,更能有效的學習思考,培養紮實的科學力。 全國自然領域教師熱血推薦     江家豪 老師 新北市中正國中生物教師     在資訊爆炸的時代,閱讀成為一項重要且不可或缺的能力,《科學少年》的科普文章深入淺出的介紹各種科學現象且主題多元

橫跨各個領域,讓孩子能在閱讀中發掘自己的興趣,又因興趣而樂於閱讀,進而厚植科學素養,培養理性思考的能力。       何莉芳 老師 台中市福科國中理化教師、台中市自然科輔導團輔導員     閱讀雜誌文章與科學教學之間是否能連結呢?這本書有如一座橋樑,將雜誌好文引入教學現場。透過老師們細心的導讀文章,加入教材連結設計並製作成學習單,有科學實驗補充、有測驗,也有延伸思考,提供有心再深入探究學習的師生一個指引。使閱讀科學文章,不僅是靜態的吸收知識,還可以發現隱藏在其中值得探討的現象與問題,並產生更多觸發!     林宣安 老師 教育部自然科中央團教師、台中市自然科輔導團輔導員、臺中市立長億高中理化教

師、長億高中自然解說團隊創隊老師     「閱讀」是自學最重要的關鍵能力,有趣又有知識內涵的讀本,更是吸引學生從小就喜歡閱讀的重要條件。由科學少年出版的《科學閱讀素養》內容包含了科學史、生活常識、趣味實驗、科技新知等豐富的內容,搭配簡單扼要的導讀與提問,更讓學生在無形當中培養了閱讀與自學的習慣,值得推薦。       李頤鋒 老師 高雄市立德國中理化教師     科學少年出版的《科學閱讀素養》,文章篇篇精彩有趣並附有學習單可供使用,老師們在授課時可配合課本相關單元使用,可增加學生的學習興趣並提升科普閱讀能力,老師們甚至可以依照書中的篇章,設計出富有自己創意的且適合孩子們的學習單。   若因授課

時間限制,無法使用學習單,亦可用口頭評量的方式,讓孩子分享文章閱讀後的心得。書中的篇章當作假期中的指定作業也是不錯的選擇喔!另外,寒、暑假的科學營隊使用書中的篇章來進行活動,定能使孩子獲益良多。       侯依伶 老師 高雄市陽明國中教師、高師大科學教育博士、高雄市自然科輔導團兼任輔導員   許多的研究都已證實,融入科學閱讀的教學有助於學生延伸課堂所學,讓學生能將課本內容所傳遞的科學概念與科學文章進行連結,使科學的學習產生意義。《科學少年》出版的《科學閱讀素養》不僅精選相關學科經典文章,更延請科學教師編寫相關的學習單,使其能直接運用在教學過程,提供教師進行科學閱讀教學時,方便且實用的教學資源

。       梁忠三 校長 桃園市自然與生活科技領域召集人、大崙國民中學校長     提昇科學素養是當前各國科學教育的首要目標,科學教育是在培養學生對科學的好奇、興趣、態度,以及人文價值觀,並能從多元化的非制式教育途徑學習科學新知,科學少年出版的《科學閱讀素養》是提升國中生科學素養的優質延伸教材。       梁楹佳 老師 高雄市興仁國中自然領域教師     培養學生閱讀的興趣是各級學校推動的重要教育工作之一。閱讀能力的養成,也是學生終身學習的基本能力。但以筆者在教育現場觀察,閱讀活動的推行內容,科普文章及書籍常在建議學生閱讀的書單中缺席。今欣見遠流出版公司,為科學教育的普及挺身而出,在《科

學人》之後,發行了更適合中小學生閱讀的《科學少年》雜誌,內容精采圖文並茂,增加學生閱讀樂趣,《科學閱讀素養》並提供了文章導讀指引及學習單,帶給中小學師生,在教學、學習及閱讀上有更佳的選擇。       黃怡靜 老師 台南市學甲國中 自然領域教師     閱讀推廣是目前許多學校致力發展的目標,但是對於教師來說,尋找適合閱讀的素材並改編成適合學生的內容並不是簡單的事。《科學少年》的《科學閱讀素養》貼心的準備了適合國中學生閱讀的素材,從閱讀、內容分析及挑戰題目一次備足,即使是不同領域專業的教師想要帶領學生進行科學閱讀都能立刻上手。而且每章內容分量剛好一次晨讀時間教師可以帶領班級學生進行共讀及討論,若

學生有興趣也很適合學生自行閱讀學習,推薦給國中教師及不同階段的學生閱讀使用。       趙思天 老師 磐石高中化學科暨國中部七年級閱讀課教師     科學少年《科學閱讀素養》每一篇的份量都不多,並搭配相當內容的學習單,內容補足了課本的不足,也準備了適量的測驗題讓同學小試牛刀,是一本非常好的輔助書籍,重點是它補足了課本在『閱讀』上的不足,讓同學可以感受到學習其實可以不用侷限在課本中,當然在現今資訊爆炸的時代,課本已不再是學習唯一的工具,影片、網站、雜誌都可以伴隨學習,也期待有更多的老師能利用這本來幫助提升學生的閱讀能力與科學內涵。     鄭皓文 老師 台中市東峰國中教師     海綿寶寶無厘

頭症候群+手機滑手症+長篇閱讀不耐症+…….天啊!這些 ”疾病” 正一步一步侵蝕著現在青少年閱讀思考的能力。別怕!最近坊間出現了一帖良方:就是科學少年推出的《科學閱讀素養》。精選的本土文章、淺白易懂的文句,讓您的孩子不再害怕閱讀,又能汲取科學的新知;配上第一線優良教師精心製作的學習單,更能啟發孩子邏輯思考推理的能力,讓您的孩子真正遠離 ”少年癡呆症” 的威脅。救世良藥,真心推薦!       謝隆欽 老師 中山大學附中教師、第一屆高雄市環境教育優等獎得主     幾年前,到警察廣播電台受訪,等待時,我拿出一本科普雜誌閱讀;主持人接我進錄音室時,隨口問我:「你在看什麼?」我將雜誌遞給她,沒想到她

一見到封面上「質子半徑的量子問題」幾個字,竟然就倒退了兩步!而當下她驚恐的神情,讓我至今難忘。     科學,是多少人的痛。 欣見《科學閱讀素養》問世,匯整了生動有趣的科學素材與延伸思考的學習單,相信在師長適當的運用及引領下,可望能消弭學子對科學的驚恐,進而培育出更具科學素養的理性社會。       鍾昌宏 老師 臺中市光榮國中生物教師、國民教育輔導團自然科輔導員     不論知識的累積、交流或傳播,閱讀都是最方便有效的途徑,《科學閱讀素養》除了精挑細選的科普文章,更由專家教師進行主題導覽、相關教材連結、挑戰閱讀王與延伸思考,讓這本特輯不僅適合科學知識的自主學習,更適合培養學生擷取訊息能力、解

釋文本能力、省思並評鑑文本能力,成為教師推動科學閱讀與培養閱讀素養的好幫手。       簡志祥 老師 新竹市光華國中生物教師     「你長大想做什麼?」「我長大要當科學家!」在我還是小孩的時候,我曾經有過這樣的夢想。記得當初為了更了解科學是什麼,我走進書店去找科學雜誌來看,可是翻開那些科學雜誌,卻看得一個頭兩個大,因為都不是寫給小孩看的。而現在不一樣喔,這本書出現了,不僅是以少年為對象,更以主題集結了過去在雜誌上的文章,用淺顯易懂的方式,帶你更貼近科學,而且文章之後還附上延伸資料和思考問題,你可以藉此更了解這個議題,而且老師也能夠拿來做相關應用呢。       蕭虹 老師 高雄市立德國中退

休教師、高雄市自然科輔導團榮譽輔導員     「邏輯會把你從A帶到B,但想像力會帶你到任何角落。」~~~愛因斯坦   在科技時代中速度與創新主導了變革,學習不再是教室內的活動、講台上的解說者。翻轉教室的轉化同時也帶動教育形態的改造,教師跳脫傳統的依賴教科書的的束縛,啟動了教育新能量的動力,老師的角色重新調適和重建,對自己原有的能力解套出來,學習與閱讀成為我們必須養成的生活習慣。適時調整自我的因應之道,與時俱進的的克盡「傳道、授業、解惑」的師道,共構「教師社群」善導學生和教學相長的心智。而科學少年的《科學閱讀素養》即能延伸教科書的學習,編輯教師隨手可使用之課外參考教材,更將學習的想像力無限放大。

      蘇敬菱 老師 宜蘭縣市復興國中生物教師、教育部中央輔導團自然與生活科技領域輔導員   螢火蟲的神密冷光及隔空點火到底是如何辦到? 科學總是充滿了未知及驚喜!本書除了收錄了數篇《科學少年》精彩的文章外,又有多位教學經驗豐富的教師整理出具加深加廣系統思考的有趣提問,引導在文本中脈絡地學習及概念連結整合。在進行中常讓人恍然大悟時常忍不住科科笑了起來,「哦~原來是這樣子哦~科科..」,令人想不停地悅讀趣。

溫度對單層碳奈米管中電子分佈的影響

為了解決石墨烯公司的問題,作者曾晧然 這樣論述:

在這個研究裡,我們運用了緊束模型加入曲度效應,分別計算了三種類型單層碳奈米管的低能能帶結構。單層碳奈米管,取決於它的幾何結構,可以是金屬、窄能隙的半導體,或是中等能隙半導體,前者必為手椅狀奈米管,後兩者都可以是鋸齒狀奈米管。幾何結構(螺旋角與半徑)以及溫度在單層碳奈米管中的電子分佈扮演重要角色,預期也進一步地影響其它物理量。