船舶歷史動態的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列地圖、推薦、景點和餐廳等資訊懶人包

船舶歷史動態的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦劉延俊,薛剛寫的 海洋智慧裝備液壓技術 和的 GPS/GNSS原理與應用(第3版)都 可以從中找到所需的評價。

另外網站中远海科董秘回复:公司目前已经和部分合作伙伴开展智慧公路 ...也說明:中远海科董秘:公司在上海数据交易所挂牌的“船视宝”(机构代码为20001528)可以通过对全球船舶、港口及航线的全生命期行为识别,提供船舶当前动态、历史 ...

這兩本書分別來自崧燁文化 和電子工業所出版 。

國立高雄科技大學 造船及海洋工程系 李子宜所指導 沈彥竹的 虛擬實境中離岸風場的建立與船舶之視覺模擬 (2021),提出船舶歷史動態關鍵因素是什麼,來自於虛擬實境、海洋環境視覺模擬、離岸風電、海上工作人員訓練。

而第二篇論文國立臺灣海洋大學 輪機工程學系 華健所指導 蘇弘毅的 落實綠港埠研究--以提供岸電服務和海洋垃圾污染防治為例 (2021),提出因為有 海運、岸電系統、發電廠、海洋垃圾、成本效益的重點而找出了 船舶歷史動態的解答。

最後網站結合動態船舶與環境資訊之綠色航路智慧領航計畫(3/4)則補充:AIS 船舶即時動態、海氣象資訊、電子海圖、網路地圖、海事安全資訊(航行警告). 等,可就歷史資料提供交通流分析或指定船舶回播檢視其航行動態與周遭 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了船舶歷史動態,大家也想知道這些:

海洋智慧裝備液壓技術

為了解決船舶歷史動態的問題,作者劉延俊,薛剛 這樣論述:

  本書主要介紹應用於海洋裝備中的液壓傳動技術。全書將傳統的液壓技術基本知識與近年來其在海洋裝備中的實際應用相結合,全面介紹了液壓流體力學基礎、主要元器件(包括液壓泵、液壓馬達、液壓缸、液壓控制閥、液壓輔助裝置等)、基本回路、典型液壓系統、伺服系統及其在海洋中的應用,同時,介紹了海洋裝備液壓系統的設計與計算。本書中的許多實例是作者近三十年在液壓技術和海洋工程交叉領域科研方面所做的工作。書中元件的圖形符號、回路以及系統原理圖全部採用最新圖形符號繪製,並在附録一中列出;附録二列出了常見液壓元件、回路、系統常見的故障與排除措施。   本書可供從事海洋工程與裝備技術工作者參閲使用

,也可作爲工科專業相關研究方向的教學參考書。

船舶歷史動態進入發燒排行的影片

彼得堡(Peterborough)是加拿大安大略省中部一座城市,離多倫多東北約125公里,行車一個半小時。整個彼得堡市內人口約為8萬,其大城區人口則為12萬。彼得堡號稱電力之城,因為該城於1884年5月24日成為加拿大首座使用電燈照明街道的城鎮。彼得堡因為工業開發較早,又是Trent-Steven水道的樞紐,還臨近Kawartha湖區和Rice Lake,旅遊資源豐富。這裡最富有特色的景點就是彼得堡船閘國家歷史遺跡,彼得堡動物園和加拿大人獨木舟博物館。彼得堡船閘國家歷史遺跡是Trent-Steven河道上的21號船閘,是該河道目前僅存的兩座液壓船閘之一。來這參觀當然是因為這裡的船閘頗具特色。船閘建于1904,高19.8米,是全世界最高的液壓船閘,名列加拿大國家歷史遺跡,應該也是彼得堡最著名的景點。當然,全世界最高的船閘位於比利時,能將船升降73米。所謂液壓船閘就是並排兩個船位,總是一升一降來運載船舶。也就是說,這裡完全不需要外來能量,利用天平的原理和自然重力的作用來完成整個運輸過程。拜國家歷史遺跡之福,這裡的旅遊設施相當完備。有訪客中心,寬敞的免費停車場,維護完好的參觀步道。春季時節,這裡有很多櫻花盛開。在訪客中心,有電影詳細介紹船閘及其作業原理,同時這裡也有一些跟運河有關的展品展出。每年的5月底到10月初,船閘開放供船隻通過。乘坐加拿大最快的過山車、在河上漂流、參觀恐龍展品和在加拿大的仙境中和小朋友盡情玩樂。樂園於 1981 年開業,現在有超過 200 個景點,每年有超過三百萬名遊客到訪。佔地 130 公頃的樂園分為八區:動態區 (Action Zone)、國際節日區 (International Festival)、國際街 (International Street)、兒童村 (KidZville)、中世紀馬戲團 (Medieval Faire)、史努比星球 (Planet Snoopy)、盤旋水滑梯 (Splash Works) 和白水峽谷 (White Water Canyon)。
聖雅各座堂(Cathedral Church of St. James)是加拿大聖公會多倫多教區的主教座堂,加拿大多倫多歷史最悠久的一個堂會,成立於1797年。目前的教堂始建於1850年,1853年6月19日建成開放,是當時該市規模最大的建築物之一。它是由腓特烈•威廉•坎伯蘭設計,哥德式復興建築。

虛擬實境中離岸風場的建立與船舶之視覺模擬

為了解決船舶歷史動態的問題,作者沈彥竹 這樣論述:

本研究是以環境建立與船舶模擬,構成離岸風場中工作船舶的虛擬實境,使用實時3D開發軟體建立模擬離岸風場的虛擬環境,置入由軟體中編輯的船體模型,以藍圖編輯其船舶的運動擬真以及船舶移動路徑,通過軟體中關卡模式與船舶攝影機組件作觀測,最後以電腦螢幕作為虛擬實境操縱與觀測介面,由此研究打造出風機運維船在擬真的離岸風場環境,進行工程之船舶的視覺動態模擬。本研究建立船舶駕駛模擬與海上工作人員的模擬訓練系統,期待日後能提供海事工程人員或操船人員作學習訓練用,以虛擬實境做海洋工程模擬,使人員得到完善的教育訓練,降低海上工作人員的風險,也提升工程的進度與效率,減少不必要的設備成本。

GPS/GNSS原理與應用(第3版)

為了解決船舶歷史動態的問題,作者 這樣論述:

本書詳細介紹了GPS、GLONASS、BeiDou、Galileo、QZSS和NavIC系統的**資訊,涵蓋了各個系統的星座配置、衛星、地面控制系統和使用者設備,提供了詳細的衛星信號特徵。   本書包括GNSS簡介、衛星導航基礎、全球衛星導航系統、GLONASS、伽利略系統、北斗衛星導航系統、區域衛星導航系統、GNSS接收機、GNSS擾亂、GNSS誤差、獨立GNSS的性能、差分GNSS和精密單點定位、GNSS與其他感測器的組合及網路輔助、GNSS市場與應用。   本書可作為高校相關專業學生學習GNSS基本知識的教材,也可供業內相關技術人員參考。 Elliott D. Kapl

an,美國麻塞諸塞州貝德福德MITRE公司首席工程師,美國紐約理工學院電氣工程理學學士,美國東北大學電氣工程理學碩士。自1986年以來,Kaplan先生一直積極參與GPS相關的政府計畫。他目前正在支持美國空軍研究實驗室航太飛行局和GPS理事會的活動,其中包括AFRL導航技術衛星3(NTS-3)的開發。 寇豔紅,博士,北京航空航太大學電子資訊工程學院副教授。長期從事衛星導航、通信與信號處理領域的科研和教學工作,擔任CSNC、ION GNSS/ITM、CPGPS、MMT等國際會議分會主席,中國第二代衛星導航系統重大專項專家組專家。已主持完成科研專案30余項,發表論文百餘篇、合著1部、譯著2部、標

準2部,獲授權發明專利十余項,獲省部級科技進步獎6項、校優秀教學成果獎2項。 第1章 引言 1 1.1 簡介 1 1.2 GNSS概述 1 1.3 全球定位系統 2 1.4 全球導航衛星系統 3 1.5 伽利略系統 4 1.6 北斗系統 5 1.7 區域系統 6 1.7.1 准天頂衛星系統 6 1.7.2 印度導航星座(NavIC) 7 1.8 增強系統 7 1.9 市場與應用 8 1.10 本書的結構 9 參考文獻 12 第2章 衛星導航基礎 13 2.1 利用到達時間測量值測距的概念 13 2.1.1 二維定位 13 2.1.2 衛星測距碼定位原理 15 2.2 參考坐

標系 17 2.2.1 地心慣性坐標系 17 2.2.2 地心地固坐標系 17 2.2.3 當地切平面(當地地平)坐標系 19 2.2.4 本體框架坐標系 20 2.2.5 大地(橢球)座標 21 2.2.6 高度座標與大地水準面 22 2.2.7 國際地球參考框架 23 2.3 衛星軌道基礎 24 2.3.1 軌道力學 24 2.3.2 星座設計 28 2.4 GNSS信號 33 2.4.1 射頻載波 33 2.4.2 調製 33 2.4.3 次級碼 36 2.4.4 複用技術 36 2.4.5 信號模型與特性 37 2.5 利用測距碼確定位置 41 2.5.1 確定衛星到用戶的距離 41

2.5.2 用戶位置的計算 43 2.6 求解使用者的速度 45 2.7 頻率源、時間和GNSS 47 2.7.1 頻率源 47 2.7.2 時間和GNSS 53 參考文獻 53 第3章 全球衛星導航系統 55 3.1 概述 55 3.1.1 空間段概述 55 3.1.2 控制段概述 55 3.1.3 用戶段概述 56 3.2 空間段描述 56 3.2.1 GPS衛星星座描述 56 3.2.2 星座設計指南 58 3.2.3 分階段發展的空間段 60 3.3 控制段描述 75 3.3.1 OCS的當前配置 76 3.3.2 OCS的進化 86 3.3.3 OCS未來計畫的升級 88 3.4

用戶段 89 3.4.1 GNSS接收機的特性 89 3.5 GPS大地測量和時標 93 3.5.1 大地測量 93 3.5.2 時間系統 94 3.6 服務 94 3.6.1 SPS性能標準 95 3.6.2 PPS性能標準 97 3.7 GPS信號 99 3.7.1 傳統信號 99 3.7.2 現代化信號 110 3.7.3 民用導航(CNAV)和CNAV-2導航數據 116 3.8 GPS星曆參數和衛星位置計算 120 3.8.1 傳統星曆參數 120 3.8.2 CNAV和CNAV-2星曆參數 121 參考文獻 123 第4章 全球導航衛星系統 126 4.1 簡介 126 4.2

空間段 127 4.2.1 星座 127 4.2.2 衛星 128 4.3 地面段 131 4.3.1 系統控制中心 131 4.3.2 中央同步器 131 4.3.3 遙測、跟蹤和指揮 132 4.3.4 鐳射測距站 132 4.4 GLONASS使用者設備 132 4.5 大地測量學與時間系統 133 4.5.1 大地測量參考坐標系 133 4.5.2 GLONASS時間 134 4.6 導航服務 135 4.7 導航信號 135 4.7.1 FDMA導航信號 135 4.7.2 頻率 136 4.7.3 調製 137 4.7.4 編碼特性 137 4.7.5 GLONASS P碼 138

4.7.6 導航電文 138 4.7.7 C/A碼導航電文 139 4.7.8 P碼導航電文 139 4.7.9 CDMA導航信號 140 致謝 142 參考文獻 142 第5章 伽利略系統 144 5.1 專案概述和目標 144 5.2 伽利略系統的實現 145 5.3 伽利略服務 145 5.3.1 伽利略開放服務 145 5.3.2 公共監管服務 146 5.3.3 商業服務 146 5.3.4 搜索與救援服務 146 5.3.5 生命安全服務 146 5.4 系統概述 146 5.4.1 地面任務段 149 5.4.2 地面控制段 152 5.4.3 空間段 153 5.4.4 運

載火箭 158 5.5 伽利略信號特徵 159 5.5.1 伽利略擴頻碼和序列 161 5.5.2 導航電文結構 162 5.5.3 正向糾錯編碼和塊交織 163 5.6 互通性 164 5.6.1 伽利略大地參考坐標系 164 5.6.2 時間參考坐標系 164 5.7 伽利略搜索和救援任務 165 5.7.1 SAR/Galileo服務描述 165 5.7.2 歐洲SAR/Galileo覆蓋區域和MEOSAR環境 166 5.7.3 SAR/Galileo系統架構 168 5.7.4 SAR頻率計畫 170 5.8 伽利略系統性能 172 5.8.1 授時性能 172 5.8.2 測距性能

173 5.8.3 定位性能 176 5.8.4 最終運營能力的預期性能 177 5.9 系統部署完成FOC的時間 178 5.10 FOC之後系統伽利略的發展 179 參考文獻 179 第6章 北斗衛星導航系統 181 6.1 概述 181 6.1.1 北斗衛星導航系統簡介 181 6.1.2 北斗的發展歷程 182 6.1.3 BDS的特點 185 6.2 BDS的空間段 186 6.2.1 BDS星座 186 6.2.2 BDS衛星 190 6.3 BDS控制段 191 6.3.1 BDS控制段的組成 191 6.3.2 BDS控制段的運行 192 6.4 大地測量參考系和時間參考系

192 6.4.1 BDS坐標系 192 6.4.2 BDS時間系統 193 6.5 BDS服務 193 6.5.1 BDS服務類型 193 6.5.2 BDS RDSS服務 194 6.5.3 BDS RNSS服務 195 6.5.4 BDS SBAS服務 197 6.6 BDS信號 197 6.6.1 RDSS信號 197 6.6.2 BDS區域系統的RNSS信號 198 6.6.3 BDS全球系統的RNSS信號 205 參考文獻 207 第7章 區域衛星導航系統 209 7.1 准天頂衛星系統 209 7.1.1 概述 209 7.1.2 空間段 209 7.1.3 控制段 211

7.1.4 大地測量和時間系統 213 7.1.5 服務 213 7.1.6 信號 214 7.2 印度導航星座 217 7.2.1 概述 217 7.2.2 空間段 218 7.2.3 NavIC控制段 219 7.2.4 大地測量和時間系統 221 7.2.5 導航服務 223 7.2.6 信號 223 7.2.7 應用和NavIC使用者設備 224 參考文獻 225 第8章 GNSS接收機 228 8.1 概述 228 8.1.1 天線單元和電子設備 229 8.1.2 前端 230 8.1.3 數位記憶體(緩衝器和多工器)和數位接收機通道 230 8.1.4 接收機控制和處理、導航控

制和處理 230 8.1.5 參考振盪器和頻率合成器 230 8.1.6 使用者和/或外部介面 231 8.1.7 備用接收機控制介面 231 8.1.8 電源 231 8.1.9 小結 231 8.2 天線 231 8.2.1 所需屬性 232 8.2.2 天線設計 232 8.2.3 軸比 234 8.2.4 電壓駐波比 236 8.2.5 天線雜訊 237 8.2.6 無源天線 238 8.2.7 有源天線 238 8.2.8 智慧天線 238 8.2.9 軍用天線 239 8.3 前端 239 8.3.1 功能描述 240 8.3.2 增益 241 8.3.3 下變頻方案 242 8.

3.4 輸出到ADC 242 8.3.5 ADC、數位增益控制和類比頻率合成器功能 243 8.3.6 ADC實現損耗及設計示例 244 8.3.7 ADC取樣速率與抗混疊 247 8.3.8 ADC欠採樣 249 8.3.9 雜訊係數 251 8.3.10 動態範圍、態勢感知及對雜訊係數的影響 251 8.3.11 與GLONASS FDMA信號的相容性 253 8.4 數位通道 254 8.4.1 快速功能 254 8.4.2 慢速功能 267 8.4.3 搜索功能 271 8.5 捕獲 286 8.5.1 單次試驗檢測器 286 8.5.2 唐檢測器 289 8.5.3 N中取M檢測器

291 8.5.4 組合唐與N中取M檢測器 293 8.5.5 基於FFT的技術 293 8.5.6 GPS軍用信號直捕 295 8.5.7 微調多普勒與峰值碼搜索 301 8.6 載波跟蹤 301 8.6.1 載波環鑒別器 302 8.7 碼跟蹤 306 8.7.1 碼環鑒別器 306 8.7.2 BPSK-R信號 308 8.7.3 BOC信號 310 8.7.4 GPS P(Y)碼無碼/半無碼處理 311 8.8 環路濾波器 311 8.8.1 PLL濾波器設計 313 8.8.2 FLL濾波器設計 314 8.8.3 FLL輔助PLL濾波器設計 314 8.8.4 DLL濾波器設計 3

15 8.8.5 穩定性 315 8.9 測量誤差和跟蹤門限 323 8.9.1 PLL跟蹤環測量誤差 323 8.9.2 PLL熱雜訊 323 8.9.3 由振動引起的振盪器相位雜訊 325 8.9.4 艾倫偏差振盪器相位雜訊 326 8.9.5 動態應力誤差 327 8.9.6 參考振盪器加速度應力誤差 327 8.9.7 總PLL跟蹤環測量誤差與門限 328 8.9.8 FLL跟蹤環測量誤差 330 8.9.9 碼跟蹤環測量誤差 331 8.9.10 BOC碼跟蹤環測量誤差 336 8.10 偽距、?偽距和積分多普勒的形成 337 8.10.1 偽距 338 8.10.2 偽距 347

8.10.3 積分多普勒 348 8.10.4 偽距載波平滑 349 8.11 接收機的初始工作順序 350 8.12 數據解調 352 8.12.1 傳統GPS信號解調 353 8.12.2 其他GNSS信號的資料解調 356 8.12.3 資料誤位元速率比較 357 8.13 特殊的基帶功能 358 8.13.1 信噪功率比估計 358 8.13.2 鎖定檢測器 360 8.13.3 周跳編輯 365 參考文獻 371 第9章 GNSS擾亂 374 9.1 概述 374 9.2 干擾 374 9.2.1 干擾類型與干擾源 374 9.2.2 影響 377 9.2.3 干擾抑制 397 9

.3 電離層閃爍 400 9.3.1 基礎物理 400 9.3.2 幅度衰落與相位擾動 400 9.3.3 對接收機的影響 401 9.3.4 抑制 402 9.4 信號阻塞 402 9.4.1 植被 402 9.4.2 地形 403 9.4.3 人造建築物 406 9.5 多徑 407 9.5.1 多徑特性及模型 408 9.5.2 多徑對接收機性能的影響 410 9.5.3 多徑抑制 416 參考文獻 417 第10章 GNSS誤差 420 10.1 簡介 420 10.2 測量誤差 420 10.2.1 衛星鐘誤差 421 10.2.2 星曆誤差 424 10.2.3 相對論效應 42

7 10.2.4 大氣效應 429 10.2.5 接收機雜訊和解析度 440 10.2.6 多徑與遮蔽效應 440 10.2.7 硬體偏差誤差 441 10.3 偽距誤差預算 444 參考文獻 444 第11章 獨立GNSS的性能 446 11.1 簡介 446 11.2 位置、速度和時間估計的概念 446 11.2.1 GNSS中的衛星幾何分佈和精度因數 446 11.2.2 GNSS星座的DOP特性 450 11.2.3 精度指標 453 11.2.4 加權最小二乘 456 11.2.5 其他狀態變數 456 11.2.6 卡爾曼濾波 457 11.3 GNSS可用性 458 11.3.

1 使用24顆衛星的標稱GPS星座預測GPS可用性 458 11.3.2 衛星故障對GPS可用性的影響 459 11.4 完好性 465 11.4.1 關於危險程度的討論 465 11.4.2 完好性異常的來源 465 11.4.3 完好性改進技術 467 11.5 連續性 475 11.5.1 GPS 475 11.5.2 GLONASS 476 11.5.3 伽利略 476 11.5.4 北斗 476 參考文獻 476 第12章 差分GNSS和精密單點定位 478 12.1 簡介 478 12.2 基於碼的DGNSS 479 12.2.1 局域DGNSS 479 12.2.2 區域DGN

SS 482 12.2.3 廣域DGNSS 482 12.3 基於載波的DGNSS 484 12.3.1 基線的即時精準確定 484 12.3.2 靜態應用 497 12.3.3 機載應用 498 12.3.4 姿態確定 500 12.4 精密單點定位 501 12.4.1 傳統PPP 501 12.4.2 具有模糊度解算的PPP 503 12.5 RTCM SC-104電文格式 506 12.5.1 2.3版 506 12.5.2 3.3版 508 12.6 DGNSS和PPP示例 509 12.6.1 基於碼的DGNSS 509 12.6.2 基於載波 524 12.6.3 PPP 527

參考文獻 528 第13章 GNSS與其他感測器的組合及網路輔助 531 13.1 概述 531 13.2 GNSS/慣性組合 532 13.2.1 GNSS接收機性能問題 532 13.2.2 慣性導航系統綜述 534 13.2.3 卡爾曼濾波器作為系統組合器 539 13.2.4 GNSSI組合方法 542 13.2.5 典型GPS/INS卡爾曼濾波器設計 544 13.2.6 實現卡爾曼濾波器的注意事項 548 13.2.7 可控接收模式天線的組合 548 13.2.8 跟蹤環路的慣性輔助 550 13.3 陸地車輛系統中的感測器組合 555 13.3.1 引言 555 13.3.2

陸地車輛增強感測器 558 13.3.3 陸地車輛感測器組合 571 13.4 A-GNSS:基於網路的捕獲和定位輔助 576 13.4.1 輔助GNSS的歷史 578 13.4.2 應急回應系統要求和指南 579 13.4.3 輔助資料對捕獲時間的影響 584 13.4.4 無線設備中的GNSS接收機集成 588 13.4.5 網路輔助的來源 590 13.5 移動設備中的混合定位 601 13.5.1 引言 601 13.5.2 移動設備增強感測器 602 13.5.3 移動設備感測器組合 607 參考文獻 609 第14章 GNSS市場與應用 613 14.1 GNSS:基於支援技術

的複雜市場 613 14.1.1 簡介 613 14.1.2 市場挑戰的定義 614 14.1.3 GNSS市場的預測 615 14.1.4 市場隨時間的變化 616 14.1.5 市場範圍和細分 617 14.1.6 政策依賴性 617 14.1.7 GNSS市場的特點 617 14.1.8 銷售預測 618 14.1.9 市場局限性、競爭體系和政策 618 14.2 GNSS的民用應用 619 14.2.1 基於位置的服務 619 14.2.2 道路 620 14.2.3 GNSS在測繪、製圖和地理資訊系統中的應用 621 14.2.4 農業 621 14.2.5 海洋 622 14.2.

6 航空 623 14.2.7 無人駕駛飛行器和無人機 624 14.2.8 鐵路 625 14.2.9 授時與同步 625 14.2.10 空間應用 625 14.2.11 GNSS室內挑戰 626 14.3 政府及軍事應用 626 14.3.1 軍事使用者設備:航空、船舶和陸地 626 14.3.2 自主接收機:智慧型武器 627 14.4 結論 628 參考文獻 628 附錄A 最小二乘和加權最小二乘估計 629 參考文獻 629 附錄B 頻率源穩定度測量 630 B.1 引言 630 B.2 頻率標準穩定度 630 B.3 穩定度的測量 631 B.3.1 艾倫方差 631 B.3.

2 哈達瑪方差 631 參考文獻 632 附錄C 自由空間傳播損耗 633 C.1 簡介 633 C.2 自由空間傳播損耗 633 C.3 功率譜密度與功率通量密度的轉換 635 參考文獻 635

落實綠港埠研究--以提供岸電服務和海洋垃圾污染防治為例

為了解決船舶歷史動態的問題,作者蘇弘毅 這樣論述:

  在全球化市場的趨勢之下,運量大且效能高的海運蓬勃發展,所造成的汙染也逐年增加。為因應環保趨勢、減緩地球暖化,IMO在2020年1月開始限制船用燃油的含硫量,由原本的3.5%降至0.5%。隨著船用燃油由高硫燃油(high sulfur fuel oil, HSFO) 轉為特低硫燃油(very low sulfur fuel oil, VLSFO),船運燃料成本上升,也為原本因投資成本高昂而在國內難以擴充的船舶岸電系統 (shore-power system)帶來絕佳機會。另一方面,海洋垃圾問題也在近年塑膠微粒對海洋生物造成危害的報導而受到關注。本文針對岸電與海洋垃圾議題研究,希望能為落實綠

港埠的環境友善與永續發展盡一份心力。本文以文獻回顧法,參考各國設置岸電的誘因機制搭配法規與規範,引導航商使用船舶岸電系統。本文並針對基隆港設置船舶岸電系統進行成本分析,評估基隆港裝設岸電對航商的吸引力,並分析台灣目前電力結構下,以陸上電廠提供靠泊船隻用電時對環境造成的可能影響。針對海洋垃圾議題,本文藉由從發電廠泵室所收集的垃圾數據與實務經驗,探討發電廠面對海洋垃圾問題的防治方法。