電漿蝕刻的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列地圖、推薦、景點和餐廳等資訊懶人包

電漿蝕刻的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦李克駿,李克慧,李明逵寫的 半導體製程概論(第四版) 和楊子明,鍾昌貴,沈志彥,李美儀,吳鴻佑,詹家瑋,吳耀銓的 半導體製程設備技術(2版)都 可以從中找到所需的評價。

另外網站大氣電漿電漿表面處處理工藝藝 - 淞耀也說明:溫電漿。亦即. 其產生的電漿. 度(Tg)趨近 mal Plasma). 獲得能量。由 ... 大氣電漿. 漿同樣具有高. 矚目。所為大. 率。工業技術. 用的方式包含 ... 劑蝕刻、火.

這兩本書分別來自全華圖書 和五南所出版 。

龍華科技大學 機械工程系碩士班 許春耀所指導 張庭瑞的 不同電子傳輸層材料之界面對大氣鈣鈦礦太陽能電池影響 (2021),提出電漿蝕刻關鍵因素是什麼,來自於鈣鈦礦太陽能電池、二氧化錫、結構、電子傳輸層。

而第二篇論文國立中央大學 光電科學與工程學系 賴昆佑、張允崇所指導 杜承達的 奈米球鏡微影術應用於半導體光檢測器之研究 (2021),提出因為有 奈米球鏡微影術、偏振光發光二極體、光檢測器、硫化銀、遮光層、絕緣層的重點而找出了 電漿蝕刻的解答。

最後網站產品資訊- ULVAC - 優貝克科技(電漿耦合乾蝕刻設備, NE系列|)則補充:電漿 耦合乾蝕刻設備, NE系列||產品資訊|中古機|半導體|平面顯示器|LED|能源與環境|真空產品|生技與傳統產業|靶材與其它材料|光學鍍膜|實驗與研究開發|優貝克科技.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了電漿蝕刻,大家也想知道這些:

半導體製程概論(第四版)

為了解決電漿蝕刻的問題,作者李克駿,李克慧,李明逵 這樣論述:

  全書分為五篇,第一篇(1~3章)探討半導體材料之基本特性,從矽半導體晶體結構開始,到半導體物理之物理概念與能帶做完整的解說。第二篇(4~9章)說明積體電路使用的基礎元件與先進奈米元件。第三篇(10~24章)說明積體電路的製程。第四篇(25~26章)說明積體電路的故障與檢測。第五篇(27~28章)說明積體電路製程潔淨控制與安全。全書通用於大專院校電子、電機科系「半導體製程」或「半導體製程技術」課程作為教材。 本書特色   1.深入淺出說明半導體元件物理和積體電路結構、原理及製程。   2.從矽導體之物理概念開始,一直到半導體結構、能帶作完整的解說,使讀者學習到全盤知識

。   3.圖片清晰,使讀者一目瞭然更容易理解。   4.適用於大學、科大電子、電機系「半導體製程」或「半導體製程技術」課程或相關業界人士及有興趣之讀者。

不同電子傳輸層材料之界面對大氣鈣鈦礦太陽能電池影響

為了解決電漿蝕刻的問題,作者張庭瑞 這樣論述:

為了避免氧氣和水分的干擾,鈣鈦礦太陽能電池在充滿氮氣的手套箱中製造,以控制鈣鈦礦的結晶度和形態。為了使這項技術商業化,在環境空氣條件製造高效的鈣鈦礦太陽能電池至關重要。本研究在大氣環境(at 60~70% relative humidity atmosphere),製備鈣鈦礦太陽能電池。探討不同的電子傳輸層(Electron Transport. Layer, ETL),包括二異丙氧基雙乙醯丙酮鈦 (titanium diisopropoxide bis, TTDB)、氧化錫 (SnO2) 和 SnO2/TTDB,對鈣鈦礦薄膜的形貌和光電性能的影響。使用一步驟法(one-step)結合反溶劑

(乙醚),製備鈣鈦礦薄膜。以Spiro-OMeTAD為電洞傳輸層,組合Glass/ ITO/SnO2/MAPbI3/Spiro-OMeTAD結構,形成鈣鈦礦太陽能電池。經由XRD、SEM、AFM、UV-VIS、PL、XPS、I-V curve等儀器分析。顯示以SnO2/TTDB為電子傳輸層(ETL),鈣鈦礦(MAPbI3)薄膜有較佳的結晶性、無中間相(PbI2-DMF-MAI)產生,結晶緻密均勻無孔隙,光學性質好,光吸收度高。開路電壓(Voc),短路電流(Jsc),及充填因子,分別為1.041 V, 19.59 mA/cm2及57%,得光電轉換效率為11.6%。

半導體製程設備技術(2版)

為了解決電漿蝕刻的問題,作者楊子明,鍾昌貴,沈志彥,李美儀,吳鴻佑,詹家瑋,吳耀銓 這樣論述:

  半導體(Semiconductor)是介於導體(Conductor)與絕緣體(Insulator)之間的材料。我們可以輕易的藉由摻質(Dopant)的摻雜(Doping)去提高導電度(Conductivity)。其中二六族及三五族是為化合物半導體(Compound Semiconductor)材料,大部分是應用於光電領域,如發光二極體(Light Emitting Diode, LED)、太陽能電池(Solar cell)等。而目前的積體電路(Integrated Circuit, IC)領域,主要還是以第四族的矽(Si)為主的元素半導體,也就是目前的矽晶圓(Silic

on Wafer)基底材料(Substrate) 。   在未來的日子,我們可預見晶圓廠裡將有可能全面改為自動化的運作,到那時將不再需要大量的操作人員。而主要的人力將會是工程師(含)以上的職務,所以希望能以此書與各位以及想轉職的朋友們提供一個分享,讓大家都能對於常見的機台設備及其製程技術,有一個全觀的認識,以提升職場的競爭力。

奈米球鏡微影術應用於半導體光檢測器之研究

為了解決電漿蝕刻的問題,作者杜承達 這樣論述:

在本次研究中,我們首先先利用奈米球鏡微影術(Nanospherical-Lens Lithography, NLL)製作金屬奈米橢圓盤陣列,這個方法可以使用很低的成本以快速的大面積製程製作出所需的金屬奈米橢圓盤陣列。另外我們搭配氮化鎵材料二次蝕刻的製程技術製作出氮化鎵發光二極體的橢圓奈米柱陣列。這個奈米柱陣列先前就已經被證明可以用來製作可發出線偏振光的發光二極體。本研究將使用這個相同的橢圓奈米柱結構,進一步測試其是否可以用來量測線偏振光。並藉著調整各項製程參數,包括橢圓的長短軸比及圓柱高等參數以達成最大的偏振選擇比。另外我們也將研究變換一些重要結構的設計,包括絕緣層以及遮光層的材料選擇,以達

成更好的元件表現。另外我們也會對目標的元件進行電磁模擬分析,以進一步設計出更適合應用的元件結構。在過去的研究中,我們知道奈米柱LED的輸出光是沒有偏振選擇的。但是,若我們在奈米柱之間,蒸鍍上一層不透光的金屬薄膜(如Ni),作為光阻擋層,以此金屬層反射一部分的發射光,若在Ni金屬表面再鍍上一層絕緣層(如SiO2),避免元件短路,接著再鍍上金屬電極,就可得到高偏振選擇比的奈米LED陣列。 我們發現,如果用硫化銀(Ag2S)取代Ni遮光層及SiO2絕緣層,可有效簡化製程步驟。這是因為當銀與硫化物產生化學反應後,會產生絕緣的硫化銀。在大氣的環境下,硫化銀為黑色立方晶系晶體,是一種不透光的

材料,因此也可以當成光阻擋層。因此我們將Ag2S作為實驗組試著將遮光層與覺層的兩次製程簡化成一次。雖然在實驗的分析上偏振選擇比不太理想,但最後我們模擬分析得到了一個還不錯的參數,可以使Photodetector的Polarization Difference Ratio的數值提高至0.753,換算成Selection Ratio 可以得到Ex:Ey = 7.09,我們也從模擬發現短軸要在50nm左右才會有比較高的偏振選擇比,所以我們會用用模擬的最佳參數,去製作出我們的Photodetector。