MEMS 感測器種類的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列地圖、推薦、景點和餐廳等資訊懶人包

MEMS 感測器種類的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦孟新宇寫的 現代機械設計手冊:單行本智慧裝備系統設計(第二版) 和黎斌的 SF6高壓電器設計(第5版)都 可以從中找到所需的評價。

另外網站感測器的核心—— 光達LiDAR 的MEMS技術 - 宏虹電子科技 ...也說明:“基於MEMS的Lidar 感測器通常價格較低,但其高性能不足以用在自動駕駛車輛。 ... 然而,這種類型的激光源也有一個致命的缺點:1550nm雷射器體積大、製造複雜, ...

這兩本書分別來自化學工業 和機械工業出版社所出版 。

國立陽明交通大學 理學院應用科技學程 許鉦宗所指導 林碗婷的 二氧化錫於氨氣感測機制之研究 (2021),提出MEMS 感測器種類關鍵因素是什麼,來自於氨氣、二氧化錫、濺鍍法、感測機制、熱退火。

而第二篇論文國立中山大學 電機工程學系研究所 黃義佑所指導 陳威佑的 高靈敏度神經元特異烯醇酶微型生醫感測晶片之開發 (2021),提出因為有 延伸式閘極場效電晶體、肺癌、神經元特異烯醇酶、微機電製程技術、自我組裝分子層的重點而找出了 MEMS 感測器種類的解答。

最後網站你知道什麼是MEMS感測器嗎? - w3c學習教程則補充:它具有體積小、質量輕、成本低、功耗低、可靠性高、技術附加值高, 適於批量化生產、易於整合和實現智慧化等特點。mems 感測器和ic晶片最大的區別在於:mems 是可動 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了MEMS 感測器種類,大家也想知道這些:

現代機械設計手冊:單行本智慧裝備系統設計(第二版)

為了解決MEMS 感測器種類的問題,作者孟新宇 這樣論述:

一部順應“中國製造2025”智慧裝備新要求、技術先進、資料可靠的現代化機械設計工具書,從新時代機械設計人員的實際需求出發,追求現代感,兼顧實用性、通用性,準確性,涵蓋了各種常規和通用的機械設計技術資料,貫徹了新的國家及行業標準,推薦了國內外先進、智慧、節能、通用的產品。 第22篇 智慧裝備系統設計 第1章 智慧裝備系統設計基礎知識 1.1智慧裝備系統的定義、特點和發展趨勢22-3 1.2智慧裝備系統基本構成要素22-5 1.2.1系統構成22-5 1.2.2技術構成22-6 1.2.3系統分類及特徵22-8 1.3智慧裝備系統產品的設計方法22-9 1.3.1智慧裝備系統

主要的分析方法22-9 1.3.1.1系統的解耦與耦合22-9 1.3.1.2系統設計公理22-10 1.3.1.3單元化設計原理22-12 1.3.1.4智慧裝備系統的結構層次22-13 1.3.1.5智慧裝備系統的基本分析22-16 1.3.2模組化設計方法22-19 1.3.3柔性化設計方法22-19 1.3.4取代設計方法22-19 1.3.5融合設計方法22-20 1.3.6優化設計方法22-20 1.3.7人-機-環境系統設計方法22-20 1.3.8可靠性設計方法22-21 1.3.9系統安全性設計方法22-24 1.4智慧裝備系統總體設計22-25 1.4.1智慧裝備產品的需求

分析22-25 1.4.2智慧裝備系統設計技術參數與技術指標制定方法22-25 1.4.3智慧裝備系統原理方案設計22-26 1.4.3.1系統的原理方案分析22-26 1.4.3.2基本功能單元的原理方案分析22-26 1.4.3.3系統的功能結構圖設計方法22-27 1.4.4智慧裝備系統結構方案設計22-28 1.4.4.1系統結構方案設計的程式22-28 1.4.4.2系統結構方案設計的基本原則22-29 1.4.5智慧裝備系統總體佈局設計22-29 1.4.6總體準確度分析與設計22-29 1.5智慧裝備系統設計流程22-30 第2章 傳感檢測系統設計 2.1傳感檢測系統22-33

2.1.1傳感檢測系統的概念與特點22-33 2.1.2傳感檢測系統的結構與組成22-33 2.1.2.1非電量的特徵22-33 2.1.2.2傳感檢測系統的結構22-34 2.1.2.3傳感檢測系統的硬體組成22-36 2.1.2.4傳感檢測系統的軟體組成22-36 2.1.3感測器信號的處理22-37 2.1.4信號傳輸22-37 2.2感測器及其應用22-38 2.2.1感測器的組成與分類22-38 2.2.2感測器的主要性能指標22-38 2.2.3各種用途的常用感測器22-39 2.2.4基於各種工作原理的常用感測器22-43 2.2.4.1電阻式感測器22-43 2.2.4.2電

容式感測器22-48 2.2.4.3電感感測器22-51 2.2.4.4壓電感測器22-58 2.2.4.5磁電感測器22-63 2.2.4.6磁致伸縮感測器22-65 2.2.4.7熱電式感測器22-71 2.2.4.8霍爾式感測器22-77 2.2.4.9光纖傳感器22-80 2.2.4.10光電感測器22-85 2.2.4.11紅外線感測器22-91 2.2.4.12鐳射式感測器22-92 2.2.4.13數字式感測器22-97 2.2.4.14氣敏感測器22-101 2.2.5智慧感測器22-114 2.2.6微感測器22-117 2.2.6.1定義特點及分類22-117 2.2.6.

2機械量微感測器22-117 2.2.6.3基於MEMS技術的氣體微感測器22-120 2.2.7感測器的選用22-120 2.2.8多感測器資訊融合22-122 2.3類比信號檢測系統設計22-124 2.3.1類比信號檢測系統的組成22-124 2.3.2基本轉換電路22-125 2.3.3信號放大電路22-127 2.3.4信號調製與解調22-130 2.3.5濾波電路22-131 2.3.6電平轉換電路22-133 2.3.7採樣-保持電路22-133 2.3.8運算電路22-133 2.3.9A/D轉換電路22-136 2.3.10數位信號的預處理22-137 2.3.11抗干擾設計

22-142 2.4數位信號檢測系統設計22-144 2.4.1數位信號檢測系統的組成22-144 2.4.2編碼器及光柵信號的電子細分方法22-145 2.5現代傳感檢測技術的新發展22-150 2.6典型傳感系統設計應用實例和檢測裝置22-152 2.6.1CX300型數控車銑加工中心傳感檢測系統設計實例22-152 2.6.2飛鋸檢測系統設計實例22-153 2.6.3新風節能系統設計實例22-156 第3章 伺服系統設計 3.1伺服系統22-159 3.2伺服系統的基本要求和設計方法22-159 3.2.1伺服系統的基本要求22-159 3.2.2伺服系統的設計步驟22-160 3.

3伺服系統執行元件及其控制22-160 3.3.1執行元件種類和特點22-160 3.3.2電氣執行元件22-161 3.3.2.1直流伺服電機及其驅動22-161 3.3.2.2交流伺服電機及其驅動22-163 3.3.2.3松下MINAS A5 伺服電機22-165 3.3.2.4步進電機及其驅動22-170 3.3.3液壓執行機構22-176 3.3.4氣動執行裝置22-176 3.3.5新型執行裝置22-177 3.3.6電液伺服閥22-177 3.3.7電液比例閥22-178 3.3.8電液數字閥22-178 3.4執行電機的選擇及設計22-179 3.4.1交流電動機調速方式22-

179 3.4.2交流變頻調速器22-180 3.5開環控制伺服系統及其設計22-181 3.6閉環伺服系統設計22-182 3.7數位伺服系統設計22-183 第4章 機械系統設計 4.1智慧裝備機械系統的基本要求和組成22-185 4.2機械傳動機構設計22-186 4.2.1機械傳動機構的分類及選用22-186 4.2.1.1智慧裝備系統對機械傳動的要求22-186 4.2.1.2機械傳動機構的分類22-187 4.2.1.3機械傳動機構的選用22-188 4.2.1.4機械傳動系統方案的選擇22-188 4.2.2傳動因素分析22-189 4.2.3絲杠螺母機構傳動設計22-191

4.2.3.1滾珠絲杠副基本結構22-191 4.2.3.2滾珠絲杠副的主要尺寸和精度等級22-201 4.2.3.3滾珠絲杠副的選擇設計計算22-205 4.2.3.4滾珠螺母安裝連接尺寸22-210 4.2.3.5靜壓絲杠螺母副22-217 4.2.4其他傳動機構22-219 4.2.4.1齒輪傳動22-219 4.2.4.2撓性傳動22-224 4.2.4.3間歇傳動22-225 4.3機械導向機構設計22-227 4.4機械執行機構設計22-232 4.4.1執行機構分析22-232 4.4.1.1主要性能指標22-232 4.4.1.2系統的品質22-235 4.4.1.3能量轉換介

面22-238 4.4.2微動機構22-240 4.4.3誤差補償機構22-244 4.4.4定位機構22-246 4.4.5設計實例22-247 4.4.5.1數控機床動力卡盤與回轉刀架22-247 4.4.5.2工業機器人末端執行器22-250 4.5支撐系統和機架設計22-252 4.5.1軸系設計的基本要求及類型22-252 4.5.2機架的基本要求及結構設計要點22-254 第5章 微機控制系統設計 5.1微機控制系統的基本組成與分類22-258 5.1.1微機控制系統的基本組成22-258 5.1.1.1微機控制系統的硬體組成22-258 5.1.1.2微機控制系統的軟體組成22

-259 5.1.2微機控制系統的分類22-259 5.2微機控制系統設計的方法和步驟22-260 5.2.1類比化設計方法和步驟22-260 5.2.1.1模擬化設計思想22-260 5.2.1.2香農採樣定理22-260 5.2.1.3類比化設計步驟22-261 5.2.1.4數位PID控制系統設計22-262 5.2.2離散化設計方法和步驟22-265 5.3微機控制系統的數學模型22-265 5.3.1差分方程22-265 5.3.1.1差分的概念和差分方程22-265 5.3.1.2差分方程的求解方法22-266 5.3.2Z傳遞函數22-266 5.3.2.1基本概念22-266

5.3.2.2開環系統的脈衝傳遞函數22-266 5.4微機控制系統分析22-268 5.4.1線性離散系統的時域回應分析22-268 5.4.2離散系統的穩定性分析22-269 5.4.2.1Z平面內的穩定條件22-269 5.4.2.2S平面與Z平面之間的映射關係22-269 5.4.2.3穩定判據22-270 5.4.3離散系統的穩態誤差22-270 5.4.4離散系統的暫態性能22-271 5.4.4.1閉環極點與暫態分量的關係22-271 5.4.4.2離散系統暫態性能的估算22-272 5.4.5離散系統的根軌跡分析法22-273 5.4.5.1Z平面上的根軌跡22-273 5.4

.5.2用根軌跡法分析離散系統22-275 5.4.6離散系統的頻率法22-275 5.5典型微機控制系統及設計應用實例22-276 5.5.1基於工業控制電腦的微機控制系統22-276 5.5.1.1系統結構和特點22-276 5.5.1.2工控組態軟體22-276 5.5.2基於單片機的微機控制系統22-276 5.5.3基於可程式設計控制器的微機控制系統22-276 第6章 介面設計 6.1介面設計基本方法和介面晶片22-278 6.1.1介面設計與分析的基本方法22-278 6.1.2常用的介面晶片22-278 6.2人機介面電路設計22-278 6.2.1人機介面電路類型與特點22

-278 6.2.2輸入介面電路設計22-279 6.2.3輸出介面電路設計22-280 6.3機電介面電路設計22-290 6.3.1機電介面電路類型與特點22-290 6.3.2信號採集通道介面中的A/D轉換介面電路設計22-290 6.3.3控制量輸出通道中的D/A轉換介面電路設計22-292 6.3.4控制量輸出通道中的功率介面電路設計22-294 6.3.4.1PWM整流電路22-294 6.3.4.2光耦合器驅動介面設計22-296 6.3.4.3繼電器22-298 6.3.5被控量回饋通道中的介面電路設計22-301 6.3.5.1速度回饋介面22-301 6.3.5.2位移回饋

介面22-301 第7章 設計實例 7.1數控機床的改造22-304 7.1.1數控車床的改造22-304 7.1.1.1數控車床的改造方案組成框圖22-304 7.1.1.2機械結構改造設計方案22-304 7.1.1.3數控車床電腦控制系統改造硬體設計22-307 7.1.1.4數控車床電腦控制系統改造軟體設計22-312 7.1.2大型數控落地鏜銑床的系統改造實例22-312 7.2工業機器人系統設計實例22-314 7.2.1工業機器人的組成與分類22-314 7.2.2SCARA型裝配機器人系統設計22-314 7.2.3BJDP-1型機器人設計22-319 7.2.4纜索並聯機器

人設計22-323 7.3無人搬運車(AGV)系統設計22-327 7.3.1無人搬運車系統(AGVS)22-327 7.3.2無人搬運車的工作原理和結構22-330 7.3.2.1無人搬運車的引導方式22-330 7.3.2.2無人搬運車的結構22-331 7.3.3典型的無人搬運車22-333 7.3.3.1瑞典AGV電子有限公司的產品22-333 7.3.3.2美國AGV產品有限公司的產品22-335 7.3.3.3中國新松AGV產品22-338 7.4信函連續作業自動處理系統設計22-343 7.4.1信函自動處理流水線22-344 7.4.1.1信函自動處理流水線的組成22-344

7.4.1.2信函自動處理的前提條件22-345 7.4.2信函分類機22-345 7.4.3緩衝儲存器22-347 7.4.4理信蓋銷機22-349 7.4.5信函分揀機22-352 7.4.5.1信函分揀的同步入格控制22-352 7.4.5.2條碼及光學條碼自動識別22-352 7.4.5.3光學文字自動識別22-355 參考文獻22-360

二氧化錫於氨氣感測機制之研究

為了解決MEMS 感測器種類的問題,作者林碗婷 這樣論述:

氨為空氣汙染物中最重要的來源之一,具有刺鼻味並且危害呼吸系統。此外,在醫療保健應用上,肝臟及腎臟疾病與各個階段呼出的氨氣濃度有密切相關性。本研究設計四組元件,以其中兩組元件進行氨氣感測,並且討論氨氣的感測機制。在材料的選擇上選用二氧化錫(SnO2),其對於還原性氣體具有良好的響應。研究利用濺鍍法(Sputter)沉積二氧化錫,便於控制材料的純度,以熱退火提高二氧化錫材料以及金屬電極與二氧化錫接觸的界面品質,從而提高感測的響應以及元件的電導率。以紅外線熱顯像儀分析加熱器施加電壓下元件產生的熱分佈以控制工作溫度。實驗顯示元件在 125C 下有最好的氣體響應,對兩組檢測範圍由 ppm 到 ppb

的氣體感測,基於實驗數據分析結果,隨著元件感測層面積的減小,感測機制由 Langmuir-Hinshelwood mechanism 轉變為 Mars-van Krevelen mechanism,最後根據感測機制預估兩組元件的偵測極限分別為 13.5 ppb 及 4.31 ppb。

SF6高壓電器設計(第5版)

為了解決MEMS 感測器種類的問題,作者黎斌 這樣論述:

本書總結了作者50年來在SF6高壓電器開發工作中的研究成果與設計經驗,詳盡地介紹了SF6氣體的理化電氣特性和SF6氣體管理方面的研究成果,總結了SF6高壓電器的結構設計經驗及設計計算方法。作者以超前意識對SF6金屬封閉式組合電器小型化和智慧化提出了許多有用的見解,並對該產品的線上監測技術進行了有實用價值的論述。對困惑高壓電器行業多年的技術難題(如溫度對SF6濕度測量值的影響、SF6濕度的限值及其線上監測、斷路器電壽命線上監測技術、產品局部放電特性及UHF法測量技術、日照對產品溫升的影響、高寒地區產品的設計與選用等),作者以自己的研究成果作了比較科學的回答。為減少溫室氣體的使

用和排放,作者總結了近年來國內外對SF6混合氣體和替代氣體的主要研究成果,並提出了環保氣體高壓電器的研究方向和設計思路,為開展環保電器的研發拉開了序幕。本書還系統地介紹了SF6電流互感器的設計計算方法,對有暫態特性的CT繞組的工作特性作了深入的分析。 本書特點是:理論分析精煉,設計計算方法適用。 本書可供高壓電器研究、設計人員,電力部門研究、設計和管理人員閱讀,也可供高等院校相關專業教師、研究生參考。本書是相關專業畢業生和研究生快速適應工作的好幫手。

高靈敏度神經元特異烯醇酶微型生醫感測晶片之開發

為了解決MEMS 感測器種類的問題,作者陳威佑 這樣論述:

依據108年行政院衛生福利部統計資料顯示,癌症已連續38年位居國人十大死因中的首位,其中在十大癌症死因中,可發現無論男性或女性皆以肺癌為死亡率最高者,每年超過9000人因其喪命。依據組織病理學,肺癌可劃分為「小細胞肺癌」以及「非小細胞肺癌」兩種,其中的小細胞肺癌因其具癌細胞生長和轉移速度快速特點,對患者的治療更具時效性,在臨床醫學上,神經元特異烯醇酶(neuron specific enolase, NSE)常用作檢測小細胞肺癌之良好指標,故透過量測血液中神經元特異烯醇酶濃度,可用來判斷患者是否罹患小細胞肺癌和其嚴重程度的參考,適合醫生臨床診斷、分期、偵測及手術後追蹤之應用。為此本論文致力於

開發可快速檢測檢測神經元特異烯醇酶之微型感測晶片,以求改善現有檢測方式較為耗時且成本較高之缺點。本論文利用微機電製程技術開發出以延伸式閘極場效電晶體為基礎,結合封裝晶片完成之微型感測晶片,並運用自我組裝單分子層技術將神經元特異烯醇酶抗體固定於延伸式閘極感測區,利用抗體與抗原會產生專一性鍵結,且過程中會施予閘極負偏壓,便可由此電晶體特性變化去推算抗原濃度。本元件之主要製程包括四次薄膜沉積與四次黃光微影製程,以製作出延伸式閘極場效電晶體,另外使用兩次薄膜沉積與兩次黃光微影製程完成封裝晶片。 本論文所開發之微型神經元特異烯醇酶感測晶片尺寸為14.1 mm × 8 mm × 1 mm,依據量測結

果顯示,本元件在量測範圍0~1 ng/ml下,其感測電壓靈敏度為0.247 V∙(ng/ml)-1,線性度R-Square=0.857;在量測範圍1~100 ng/ml下,其感測電壓靈敏度為3.58×10-3 V∙(ng/ml)-1,線性度R-Square=0.934,偵測極限為0.279 ng/ml,響應時間為300秒,且對於癌胚抗原、細胞角質素21-1之感測靈敏度極低,顯示本論文開發之感測晶片具高專一性。綜觀上述,本論文所開發之微型神經元特異烯醇酶感測晶片具有體積小、感測靈敏度高、專一性高以及響應時間快等優點。