sata電源腳位的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列地圖、推薦、景點和餐廳等資訊懶人包

sata電源腳位的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦(美)艾本·阿普頓等寫的 使用Raspberry Pi學習計算機體系結構 和黃鑫船的 電腦維修基礎不是事兒都 可以從中找到所需的評價。

另外網站4-1 個人電腦拆裝也說明:4-4 SATA 串列介面補充介紹 ... 所有的IDE 排線都有『紅色』記號,表示為第一隻腳位,將其靠近電源 ... 若試場為SATA 串列傳輸介面,請自行參閱第4-4 節補充說明。

這兩本書分別來自清華大學 和電子工業所出版 。

明志科技大學 電機工程系碩士班 陳瓊安所指導 蘇峻昱的 最佳化USB 3.0 8b/10b編碼器與解碼器 (2021),提出sata電源腳位關鍵因素是什麼,來自於USB 3.0、8位元/10位元 (8b/10b)、先進先出 (FIFO)、數位鎖相 (DPLL)、硬體描述語言 (Verilog HDL)。

而第二篇論文淡江大學 電機工程學系碩士班 楊維斌所指導 介志中的 超低電壓具多重相位觸發及自動變頻機制之數位式低壓降線性穩壓器 (2018),提出因為有 超低電壓、數位式低壓降線性穩壓器、同步控制迴路、多重相位觸發、自動變頻機制的重點而找出了 sata電源腳位的解答。

最後網站sata開關電源 - 阿里巴巴商務搜索則補充:阿里巴巴為您找到55條sata開關電源產品的詳細參數,實時報價,價格行情,優質批發/供應等信息。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了sata電源腳位,大家也想知道這些:

使用Raspberry Pi學習計算機體系結構

為了解決sata電源腳位的問題,作者(美)艾本·阿普頓等 這樣論述:

Raspberry Pi的誕生,深受20世紀80年代價格相對低廉的高度可編程計算機(以及它們對英國高新技術產生的影響)的啟發,它激勵新一代程序設計師並為他們提供准入平台。經濟成本和技術門檻的可接受性,使得Raspberry Pi成為學習計算機工作原理的理想工具。《使用Raspberry Pi學習計算機體系結構》將會是你整個Raspberry Pi內幕發現之旅的私人指南,也將成為你學習由Raspberry Pi完美詮釋的知識庫的專業級教練。作者Eben Upton和Jeff Duntemann是理想的導師:作為Raspberry Pi的共同創始人,Upton展現出他的深刻洞察力;Dunteman

則將復雜的技術知識凝練為易於理解的解釋。以Raspberry Pi這塊信用卡般大小的計算機(正在革新編程世界)的體系結構為基礎,Upton和Duntemann共同提供了隱藏在所有計算機背后的技術的專業級指 導。《使用Raspberry Pi學習計算機體系結構》按部就班地講解每個組件,包括組件能做什麼、為何需要它、該組件與其他組件的關系,以及組件創建過程中設計者面臨的選擇等。從內存、存儲器和處理器,到以太網、相機和音頻。Upton和Duntemann相互合作,確保讀者扎實理解Raspberry Pi的內部結構及其整體上與計算背后的技術之間的關系。 第1章 計算機漫談 11.1

日益繽彩紛呈的Raspberry 11.2 片上系統 41.3 一台令人激動的信用卡般大小的計算機 51.4 Raspberry Pi的功能 61.5 Raspberry Pi板 71.5.1 GPIO引腳 71.5.2 狀態LED 91.5.3 USB插口 101.5.4 以太網連接 101.5.5 音頻輸出 111.5.6 復合視頻 121.5.7 CSI攝像頭模塊連接器 131.5.8 HDMI 131.5.9 micro USB電源 141.5.10 存儲卡 141.5.11 DSI顯示連接 151.5.12 裝配孔 151.5.13 芯片 161.6 未來 16第2章計算概述 19

2.1 計算機與烹飪 202.1.1 佐料與數據 202.1.2 基本操作 212.2 按計划執行的盒子 222.2.1 執行和知曉 222.2.2 程序就是數據 232.2.3 存儲器 242.2.4 寄存器 252.2.5 系統總線 262.2.6 指令集 262.3 電平、數字及其表示 272.3.1 二進制:以1和0表示 272.3.2 手指的局限性 292.3.3 數量、編號和0 292.3.4 用於二進制速記的十六進制 302.3.5 執行二進制和十六進制運算 312.4 操作系統:幕后老板 332.4.1 操作系統的功能 332.4.2 向內核致敬 342.4.3 多核 34第3

章電子存儲器35 3.1 存儲器先於計算機而存在 35 3.2 旋轉磁存儲器(Rotating Magnetic Memory) 36 3.3 磁芯存儲器 37 3.3.1 磁芯存儲器的工作過程38 3.3.2 存儲器訪問時間39 3.4 靜態隨機訪問存儲器(SRAM) 40 3.5 地址線和數據線 41 3.6 由存儲器芯片構建存儲器系統42 3.7 動態隨機訪問存儲器(DRAM) 45 3.7.1 DRAM的工作原理 45 3.7.2 同步DRAM和異步DRAM47 3.7.3 SDRAM列、行、Bank、Rank和DIMM 49 3.7.4 DDR、DDR2、DDR3和DDR4 SDRA

M50 3.7.5 糾錯碼存儲器53 3.8 Raspberry Pi的存儲器系統54 3.8.1節能性54 3.8.2球柵陣列封裝55 3.9 緩存 55 3.9.1訪問的局部性56 3.9.2緩存層級56 3.9.3緩存行和緩存映射57 3.9.4直接映像59 3.9.5相聯映射61 3.9.6組相聯高速緩存62 3.9.7回寫緩存到存儲器63 3.10 虛擬存儲器 64 3.10.1虛擬存儲器概覽64 3.10.2虛擬存儲器到物理存儲器的映射65 3.10.3 深入了解存儲器管理單元66 3.10.4 多級頁表和TLB69 3.10.5 Raspberry Pi的交換問題70 3.10.

6 Raspberry Pi虛擬存儲器70 第4章ARM處理器與片上系統73 4.1 急速縮小的CPU 73 4.1.1微處理器74 4.1.2晶體管預算75 4.2 數字邏輯基礎 75 4.2.1邏輯門75 4.2.2觸發器和時序邏輯76 4.3 CPU內部78 4.3.1分支與標志79 4.3.2系統棧80 4.3.3系統時鍾和執行時間82 4.3.4流水線技術83 4.3.5流水線技術詳解84 4.3.6深入流水線以及流水線阻塞86 4.3.7 ARM11 中的流水線88 4.3.8 超標量執行89 4.3.9 基於SIMD的更多並行機制90 4.3.10 字節序92 4.4 CPU再認

識:CISC與RISC 93 4.4.1 RISC的歷史95 4.4.2 擴展的寄存器文件95 4.4.3 加載/存儲架構 96 4.4.4 正交的機器指令96 4.4.5 獨立的指令和數據高速緩存97 4.5 源於艾康的ARM 97 4.5.1微架構、內核及家族98 4.5.2 出售設計許可而非成品芯片98 4.6 ARM11 99 4.6.1 ARM指令集99 4.6.2 處理器模式102 4.6.3 模式和寄存器103 4.6.4 快速中斷107 4.6.5 軟件中斷108 4.6.6 中斷優先級108 4.6.7 條件指令執行109 4.7 協處理器 111 4.7.1 ARM協處理器

接口112 4.7.2 系統控制協處理器113 4.7.3 向量浮點協處理器113 4.7.4 仿真協處理器114 4.8 ARM Cortex 114 4.8.1 多發和亂序執行115 4.8.2 Thumb 2 115 4.8.3 Thumb EE 115 4.8.4 big.LITTLE 116 4.8.5 NEON SIMD協處理器 116 4.8.6 ARMv8和64位計算117 4.9 片上系統 118 4.9.1 博通BCM2835 SoC 118 4.9.2 第二代和第三代博通SoC 設備119 4.9.3 VLSI芯片原理119 4.9.4 流程、制程工藝和掩膜120 4.9

.5 IP:單元、宏單元、內核120 4.9.6 硬IP和軟IP121 4.9.7 平面規划、布局和布線121 4.9.8 片上通信的標准:AMBA 122 第5章程序設計 125 5.1 程序設計概述 125 5.1.1 軟件開發過程126 5.1.2 瀑布、螺旋與敏捷128 5.1.3 二進制程序設計130 5.1.4 匯編語言和助記符131 5.1.5 高級語言132 5.1.6 花樣泛濫的后BASIC 時代134 5.1.7 程序設計術語135 5.2 本地代碼編譯器的工作原理 137 5.2.1 預處理138 5.2.2 詞法分析138 5.2.3 語義分析139 5.2.4 生成中

間代碼139 5.2.5 優化139 5.2.6 生成目標代碼139 5.2.7 C編譯:一個具體示例140 5.2.8 鏈接目標代碼文件到可執行文件145 5.3 純文本解釋程序 146 5.4 字節碼解釋語言 148 5.4.1 p-code 148 5.4.2 Java 149 5.4.3 即時編譯(JIT) 150 5.4.4 Java之外的字節碼和JIT 編譯152 5.4.5 Android 、Java和Dalvik 152 5.5 數據構建塊 152 5.5.1 標識符、關鍵字、符號和操作符153 5.5.2 數值、文本和命名常量153 5.5.3 變量、表達式和賦值154 5.

5.4 類型和類型定義154 5.5.5 靜態和動態類型156 5.5.6 補碼和IEEE 754 157 5.6 代碼構建塊 159 5.6.1 控制語句和復合語句159 5.6.2 if/then/else 159 5.6.3 switch和case 161 5.6.4 repeat循環162 5.6.5 while循環163 5.6.6 for循環164 5.6.7 break和continue語句166 5.6.8 函數166 5.6.9 局部性和作用域168 5.7 面向對象程序設計 170 5.7.1 封裝172 5.7.2 繼承174 5.7.3 多態176 5.7.4 OOP小

結 178 5.8 GNU編譯器工具集概覽178 5.8.1 作為編譯器和生成工具的gcc179 5.8.2 使用Linux make 181 第6章非易失性存儲器185 6.1 打孔卡和磁帶 186 6.1.1 打孔卡186 6.1.2 磁帶數據存儲器186 6.1.3 磁存儲器的黎明188 6.2 磁記錄和編碼方案 189 6.2.1 磁通躍遷190 6.2.2 垂直記錄191 6.3 磁盤存儲器 192 6.3.1 柱面、磁軌和扇區193 6.3.2 低級格式化194 6.3.3 接口和控制器195 6.3.4 軟盤驅動器197 6.4 分區和文件系統 198 6.4.1 主分區和擴展分

區198 6.4.2 文件系統和高級格式化199 6.4.3 未來:GUID分區表 (GPT) 200 6.4.4 Raspberry Pi SD卡的分區201 6.5 光盤 202 6.5.1 源自CD的格式203 6.5.2 源自DVD的格式204 6.6 虛擬硬盤 205 6.7 Flash存儲器206 6.7.1 ROM、PROM和 EPROM 206 6.7.2 Flash與EEPROM 207 6.7.3 單級與多級存儲209 6.7.4 NOR Flash與NAND Flash 210 6.7.5 損耗平衡及Flash轉換層213 6.7.6 碎片回收和TRIM 214 6.7.

7 SD卡 215 6.7.8 eMMC216 6.7.9 非易失性存儲器的未來217 第7章有線和無線以太網219 7.1 網絡互連OSI參考模型220 7.1.1 應用層222 7.1.2 表示層222 7.1.3 會話層223 7.1.4 傳輸層223 7.1.5 網絡層224 7.1.6 數據鏈路層226 7.1.7 物理層226 7.2 以太網 227 7.2.1 粗纜以太網和細纜以太網227 7.2.2 以太網的基本構想227 7.2.3 沖突檢測和規避228 7.2.4 以太網編碼系統2297.2.5 PAM-5 編碼2327.2.6 10BASE-T和雙絞線233 7.2.7

從總線拓撲結構到星型拓撲結構234 7.2.8 交換以太網235 7.3 路由器和互聯網 237 7.3.1 名稱與地址237 7.3.2 IP地址和TCP端口2387.3.3 本地IP地址和DHCP 240 7.3.4 網絡地址轉換242 7.4 Wi-Fi 243 7.4.1 標准中的標准244 7.4.2 面對現實世界245 7.4.3 正在使用的Wi-Fi 設備 248 7.4.4 基礎設施網絡與Ad Hoc 網絡249 7.4.5 Wi-Fi 分布式介質訪問 250 7.4.6 載波監聽和隱藏結點問題251 7.4.7 分片253 7.4.8 調幅、調相和QAM 253 7.4.9

擴頻技術256 7.4.10 Wi-Fi 調制和編碼細節256 7.4.11 Wi-Fi 連接的實現原理259 7.4.12 Wi-Fi 安全性 260 7.4.13 Raspberry Pi上的Wi-Fi 261 7.4.14 更多的網絡263 第8章操作系統 2658.1 操作系統簡介 2668.1.1 操作系統的歷史 2678.1.2 操作系統基礎 2708.2 內核:操作系統的核心主導者 2748.2.1 操作系統控制 2768.2.2 模式 2768.2.3 存儲器管理 2778.2.4 虛擬存儲器 2788.2.5 多任務處理 2788.2.6 磁盤訪問和文件系統 2798.2.7

設備驅動程序 2798.3 操作系統的使能器和助手 2798.3.1 喚醒操作系統 2808.3.2 固件 2838.4 Raspberry Pi上的操作系統 2838.4.1 NOOBS 2848.4.2 第三方操作系統 2858.4.3 其他可用的操作系統 285第9章 視頻編解碼器和視頻壓縮 2879.1 第一個視頻編解碼器 2889.1.1 利用眼睛 2889.1.2 利用數據 2909.1.3 理解頻率變換 2939.1.4 使用無損編碼技術 2979.2 時移世易 2989.2.1 MPEG的最新標准 2999.2.2 H.265 3029.3 運動搜索 3029.3.1 視頻質

量 3049.3.2 處理能力 305第10章 3D圖形307 10.1 3D圖形簡史307 10.1.1 圖形用戶界面(Graphical User Interface,GUI) 308 10.1.2 視頻游戲中的3D圖形310 10.1.3 個人計算和顯卡311 10.1.4 兩個競爭標准312 10.2 OpenGL圖形管線 314 10.2.1 幾何規范和屬性315 10.2.2 幾何變換317 10.2.3 光照和材質320 10.2.4 圖元組裝和光柵化322 10.2.5 像素處理(片段着色)324 10.2.6 紋理326 10.3 現代圖形硬件 328 10.3.1 瓦片渲染

329 10.3.2 幾何拒絕330 10.3.3 着色332 10.3.4 緩存333 10.3.5 Raspberry Pi GPU 334 10.4 Open VG 336 10.5 通用GPU 338 10.5.1 異構體系結構338 10.5.2 OpenCL 339 第11章音頻 341 11.1 現在能聽到我的聲音嗎?341 11.1.1 MIDI342 11.1.2 聲卡342 11.2 模擬與數字343 11.3 聲音和信號處理344 11.3.1 編輯344 11.3.2 壓縮345 11.3.3 使用特效錄制345 11.3.4 編碼和解碼通信信息346 11.4 1位D

AC 347 11.5 I2S 349 11.6 Raspberry Pi聲音輸入/輸出350 11.6.1 音頻輸出插孔350 11.6.2 HDMI350 11.7 Raspberry Pi的聲音351 11.7.1 Raspberry Pi板載聲音351 11.7.2 處理Raspberry Pi的聲音351 第12章 輸入/輸出359 12.1 輸入/輸出簡介 359 12.2 I/O使能器 362 12.2.1 通用串行總線363 12.2.2 USB有源集線器365 12.2.3 以太網367 12.2.4 通用異步收發器368 12.2.5 小型計算機系統接口368 12.2.6

PATA 369 12.2.7 SATA 369 12.2.8 RS-232串口 370 12.2.9 HDMI 370 12.2.10 I2S 371 12.2.11 I2C 371 12.2.12 Raspberry Pi顯示器、攝像頭接口和JTAG 372 12.3 Raspberry Pi GPIO 373 12.3.1 GPIO概述以及博通SoC 373 12.3.2 接觸GPIO 374 12.3.3 可編程GPIO 380 12.3.4 可選模式385 12.3.5 GPIO實驗的簡單方法 385

最佳化USB 3.0 8b/10b編碼器與解碼器

為了解決sata電源腳位的問題,作者蘇峻昱 這樣論述:

通用串行總線(Universal Serial Bus :USB)是一種用於連接主機與設備的傳輸接口,可用於傳輸資料或充電等等。USB 3.0的傳輸速度為5Gbps,而USB2.0的傳輸速度只有480Mbps,USB 3.0的傳輸速度為USB2.0的10倍之快。USB 3.0架構為實體層(Physical Layer)、鏈結層(Link Layer)及通訊協定層(Protocol Layer)。實體層用於接收與傳送資料,在USB 3.0中有9根腳位,5根腳位用於高速訊號,4根腳位用於USB2.0,因此USB 3.0連接USB2.0時,相容性只有USB2.0功能。鏈結層的核心-鏈路訓練和狀態機

(Link Training and Status State Machine , LTSSM),定義鏈路連結和電源管理的轉換與狀態。通訊協定層定義主機與設備之間的通訊規則。本文加入先進先出(FIFO)電路模組,有效提升資料傳輸速度,並結合數位鎖相(DPLL)電路,使輸出時脈有多重選擇,但為了增加數據的廣泛性,因此本文提出串出並進電路以及並進串出電路,將可額外產生多筆新數據,使應用層面大幅提升,接續導入數據狀態電路,針對新數據進行多重檢測,得知資料狀態之可用性。為了透過輸入訊號來控制時脈之選擇,因此導入資料速率電路,方可自由選擇最上層輸出時脈,其電路皆使用硬體描述語言(Verilog HDL)

進行設計與編譯。

電腦維修基礎不是事兒

為了解決sata電源腳位的問題,作者黃鑫船 這樣論述:

本書是以迅維培訓中心實地計算機維修基礎教材為基礎編寫的,是迅維培訓中心的教學精華。本書第1章介紹電路基礎,包括計算機主板電路中各種電子元器件的工作原理與特性,以及各元件的測量方法、好壞判斷及其在電路中的應用。第2章介紹主板維修基礎,包括主板的架構,主板上各個插槽、接口上的重要信號測試點介紹,以及主板上的一些特殊元器件原理。第3章介紹筆記本電腦維修基礎,包括筆記本電腦組成結構、筆記本電腦的特殊元件,以及筆記本電腦特色電路分析。第4章介紹注液晶顯示器維修基礎,包括液晶顯示器中的特殊元件和典型電路分析。第5章介紹計算機軟件維護,包括系統安裝方法與步驟,以及驅動的安裝方法。第6章介紹常用維修工具,包括

風槍、烙鐵、萬用表、BGA返修台、編程器、直流穩壓電源、各種打值卡、示波器等工具的使用方法與技術要領。迅維網成立於2006年,是計算機產品、IT數碼產品等專業維修人員的交流平台,注冊會員100萬人,日PV30萬,匯聚百萬專業維修精英,提供各種翔實的維修案例和經驗分享。 第1章 電路基礎 1.1 電腦維修中用到的基本概念 1.1.1 電壓 1.1.2 電流 1.1.3 電阻 1.1.4 歐姆定律 1.1.5 功率 1.1.6 電源與負載 1.1.7 模擬信號與數字信號 1.1.8 頻率與周期 1.1.

9 脈沖信號 1.1.10 上升沿、下降沿與占空比 1.1.11 通路、斷路(開路)與短路 1.1.12 電路圖 1.1.13 供電、信號與地 1.1.14 高電平與低電平 1.1.15 總線 1.1.16 單位前綴 1.2 電阻器 1.2.1 電阻器的電路符號 1.2.2 直標法 1.2.3 數標法 1.2.4 色標法 1.2.5 查表法 1.2.6 電阻的檢測方法 1.2.7 電阻串聯 1.2.8 電阻並聯 1.2.9 分壓電阻 1.2.10 隔離保

護電阻 1.2.11 上拉電阻 1.2.12 下拉電阻 1.2.13 限流保護電阻 1.3 電容器 1.3.1 電容器的分類 1.3.2 電容器的特性 1.3.3 電容器的串並聯 1.3.4 電容器的檢測方法 1.3.5 電容器的應用 1.3.6 電容器的更換 1.4 電感器 1.4.1 電磁感應 1.4.2 電感器的特性 1.4.3 電感器的應用——脈寬調制 1.4.4 電感器的應用——變壓器與逆變器 1.5 二極管 1.5.1 二極管的分類 1.5.2 二極管

的特性 1.5.3 二極管的主要參數 1.5.4 二極管的極性判斷與好壞判斷 1.5.5 整流二極管 1.5.6 開關二極管 1.5.7 肖特基二極管 1.5.8 穩壓二極管 1.5.9 限幅二極管 1.5.10 鉗位二極管 1.6 三極管 1.6.1 三極管的內部結構 1.6.2 三極管的工作原理 1.6.3 數字三極管 1.6.4 雙三極管 1.6.5 三極管的引腳識別 1.6.6 三極管的測量 1.7 場效應管(MOS管) 1.7.1 場效應管的定義 1.

7.2 場效應管的電路符號 1.7.3 體二極管 1.7.4 場效應管的工作狀態 1.7.5 場效應管的測量 1.8 邏輯門電路 1.8.1 與門電路 1.8.2 或門電路 1.8.3 非門電路 1.8.4 與非門電路 1.8.5 或非門電路 1.8.6 三態緩沖門電路 1.9 運算放大器與比較器 1.9.1 運算放大器 1.9.2 比較器 1.10 晶振 1.10.1 實時晶振 1.10.2 時鍾晶振 1.10.3 聲卡晶振 1.10.4 網卡晶振、SATA晶

振 1.10.5 晶振測量 第2章 主板維修基礎 2.1 主板的組成 2.1.1 主板元件布局 2.1.2 CPU接口 2.1.3 北橋和南橋 2.1.4 PCB與總線 2.1.5 北橋管理的總線 2.1.6 南橋管理的總線 2.2 主板上常用的插槽與接口 2.2.1 ATX接口 2.2.2 FDD接口 2.2.3 IDE接口 2.2.4 SATA接口 2.2.5 串行口 2.2.6 並行口 2.2.7 PCI插槽 2.2.8 AGP插槽 2.2.9 PCI

-E插槽 2.2.10 DDR2插槽 2.2.11 DDR3插槽 2.2.12 USB接口 2.2.13 VGA接口 2.2.14 DVI接口 2.2.15 PS/2接口 2.3 主板上的特殊元器件 2.3.1 三端固定穩壓IC 78系列 2.3.2 三端可調穩壓IC 1117 2.3.3 三端可調精密穩壓IC 431 2.3.4 內存總線上拉供電穩壓IC 9173 2.3.5 五端可調穩壓IC 1580 2.4 主板特色電路 2.4.1 三極管應用電路 2.4.2 典型供電電路第3

章 筆記本電腦維修基礎 3.1 筆記本電腦的組成 3.1.1 外殼 3.1.2 顯示屏 3.1.3 主板 3.1.4 鍵盤 3.1.5 觸控板 3.1.6 硬盤和光驅 3.1.7 電池 3.1.8 接口 3.2 筆記本電腦特殊的元器件 3.2.1 8腳MOS管 3.2.2 霍爾元件 3.3 筆記本電腦特色電路分析 3.3.1 溫控電路 3.3.2 電壓檢測電路 3.3.3 保護隔離電路第4章 液晶顯示器維修基礎 4.1 液晶顯示器上的特殊元器件 4.1.1 橋堆

4.1.2 光耦 4.2 典型電路分析 4.2.1 整流電路 4.2.2 電源電路第5章 電腦軟件維護 5.1 系統安裝 5.1.1 BIOS設置 5.1.2 啟動U盤制作 5.1.3 分區、格式化 5.1.4 Ghost安裝系統 5.2 硬件驅動 5.2.1 驅動程序不正常導致的故障現象 5.2.2 設備硬件ID 5.2.3 直接安裝驅動程序 5.2.4 強制安裝驅動程序 5.2.5 使用第三方驅動軟件安裝驅動程序第6章 常用維修工具的使用 6.1 數字萬用表 6.1.1

電壓的測量 6.1.2 電流的測量 6.1.3 電阻的測量 6.1.4 對地值的測量 6.2 烙鐵 6.2.1 烙鐵的選擇 6.2.2 烙鐵頭的清洗 6.2.3 焊錫和烙鐵的握法 6.2.4 手工焊接的方法 6.2.5 錯誤的焊接方法 6.2.6 確認烙鐵溫度 6.2.7 芯片的焊接方法 6.2.8 熱風槍 6.2.9 BGA芯片植球 6.3 BGA返修台 6.3.1 認識BGA返修台 6.3.2 溫度曲線設定 6.3.3 選擇曲線 6.3.4 拆焊BGA芯片

6.3.5 儀表式BGA的操作方法 6.4 編程器 6.4.1 BIOS資料下載 6.4.2 讀/寫BIOS資料 6.5 直流穩壓電源 6.5.1 面板及旋鈕 6.5.2 轉接頭 6.5.3 燒機法修短路 6.5.4 筆記本電腦的動態電流 6.6 電腦維修專用工具 6.6.1 CPU假負載 6.6.2 內存打值卡 6.6.3 液晶屏、內存轉接板 6.6.4 點屏器 6.6.5 隔離變壓器 6.6.6 筆記本電腦主板診斷卡 6.7 數字示波器 6.7.1 面板介紹

6.7.2 顯示窗口 6.7.3 探頭補償 6.7.4 垂直系統 6.7.5 水平系統 6.7.6 觸發系統 6.7.7 用示波器測量晶振 6.7.8 用示波器捕捉單次信號 6.7.9 用示波器單次觸發功能抓上電 6.7.10 用示波器抓掉電 6.7.11 示波器雙通道的設置方法 6.7.12 筆記本電腦常見波形(僅供參考) 6.7.13 常見PWM電路故障波形分析 6.7.14 測常見波形時示波器的參數設置對照表

超低電壓具多重相位觸發及自動變頻機制之數位式低壓降線性穩壓器

為了解決sata電源腳位的問題,作者介志中 這樣論述:

隨著穿戴式電子產品的蓬勃發展,IC產業也越來越專注在超低電壓、超低功耗、高整合度…等等方面設計,而數位式低壓降線性穩壓器不僅能操作在超低電壓,也因為不需使用外接電感元件故有體積小的優勢,所以較常被使用在可攜式產品中。此論文提出具雙調節機制之超低電壓數位式非同步低壓降線性穩壓器,論文使用TSMC 90nm 1P9M製程作設計,電路操作在輸入電壓0.5V,可以提供輸出負載電流600μA至2.4mA之0.3V電壓,而此電壓可以供給許多系統作使用例如:感測器、類比數位轉化器、靜態隨機存取記憶體…等等。 此研究採用數位同步式的設計,其電路複雜度相較於非同步式而言較為簡易,然而隨著通訊與手機產業的

崛起,低壓降線性穩壓器除了不斷往快速響應的方向,系統中已逐漸以高轉換效率的理念並提高雜訊抑制能力來設計。在設計同步的時脈時頻率越高追鎖速度相對就會越快,但相對的電流效率會越來越低,因此如何在同一頻率的一個週期內做出更多的比較,就可以達到更快的鎖定速率、更高的電流轉換效率,即為本論文的研究出發點。 在未來的電源管理系統中需要輸出多組不同電壓供電,因此如何克服不同輸出間能夠不互相影響,並且抗製程、溫度、電壓變異…等,將是未來發展方向之一;隨著綠能觀念的意識抬頭,電源管理系統也更重視獵能電路的發展,因此如何設計一高效能的電源管理系統以用來結合獵能趨勢,也必然是電源管理系統最大的挑戰,以上為此論文

未來研究發展的方向以及重點。