數值計算的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列地圖、推薦、景點和餐廳等資訊懶人包

數值計算的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦李超,王曉晨寫的 你終究要學會Linux Shell指令完整使用精解 和吳永富的 圖解單元操作都 可以從中找到所需的評價。

另外網站MATLAB 數值微積分與微分方程式求解也說明:數值 積分. ▫ 已知數據點的積分,不知函數f(x):trapz ... (註:比較此結果與利用trapz指令計算之結果) ... 數值微分. ▫ 可利用diff 函數. Ex: >>x=0:0.1:1;.

這兩本書分別來自深智數位 和五南所出版 。

國立臺北科技大學 製造科技研究所 韓麗龍、蔡定江所指導 李勇震的 安全眼鏡之熱殘留應力分析與改善研究 (2021),提出數值計算關鍵因素是什麼,來自於安全眼鏡、熱殘留應力、衝擊強度、田口方法、信心水準、容許誤差。

而第二篇論文國立臺灣科技大學 機械工程系 林顯群所指導 趙崇臻的 雙級同軸離心式抽水泵浦之性能改善與模擬分析 (2021),提出因為有 雙級同軸離心式泵浦、參數分析、流/聲場數值分析、性能曲線、聲場特性的重點而找出了 數值計算的解答。

最後網站出國報告詳細資料-爆炸問題之數值計算則補充:本次移地研究有兩個重要的主題: 第一個主題主要是針對爆炸問題的數值計算與東京芝浦工業大學的石渡哲哉教授及其研究團隊討論有關解的爆炸速率的數值計算法,並以舉行 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了數值計算,大家也想知道這些:

你終究要學會Linux Shell指令完整使用精解

為了解決數值計算的問題,作者李超,王曉晨 這樣論述:

你終究有一天要回到Linux shell的, 為何不現在就開始?   被Windows和MacOS帶壞的你,想當個稱職的工程師,終究還是得回到Command Line。自動化固定性的工作、玩弄作業系統於股掌之間、用編輯器之神vim、宗師級的oh-my-zsh,別再牽拖,現在就開始用!   類Linux系列是全世界被最多人使用的作業系統(不是Windows哦,如果算上Android、MacOS和iOS的核心),他最強大的功能不是不會中毒,更不會是醜醜的GUI(你也可以讓他很漂亮!),一定就是那通殺每個工程師的shell指令。 這本書將會是你踏入專業領域最重要的一本工具書。 本書特色

  ◎針對初學者   這本書簡單易學,絕不在一開始就堆砌專業術語,而是注重趣味性和參與感,學習的過程就像你一邊敲鍵盤,我們一邊在你身旁聊一聊那些讓你疑惑的點,聊著聊著你就學會了。除了帶大家一步步操作,書中還會重點講解想法與方法,說明不同部分之間的內在關聯和區別,以便大家建立知識網,知其然亦知其所以然。   ◎強調實用性   書中每個概念、工具都儘量配合程式範例,方便各位自學。隨書程式開放原始碼a,以容器形式提供完整的作業環境,大家既可以手動架設環境,也可以先體驗效果,再決定要不要深入了解。除了介紹應用的使用方法,書中還包含安裝和移除方法—裝卸自如,大家可以根據個人情況靈活取捨。   ◎注重

準確性   網路資源浩如煙海,但準確性參差不齊,大家篩選的過程需要耗費大量精力。而我們經過多年的學習,本身已經掌握了大量互動列知識並閱讀消化了不少資料,因此,我們在寫作本書的過程中遵循了一個原則:儘量使用第一手資料,避免大家被不可靠的轉述帶著走冤枉路。   ◎針對多種作業系統   本書以Linux 使用者為主,兼顧macOS 和Windows 使用者:介紹了在3種平台上架設互動列環境的方法,範例程式在Linux Mint 20、macOS 和Windows(WSL:Ubuntu 20.04 LTS)下通過測試。另外,還需要強調一點,這本書的寫作離不開開放原始碼工具和社區,期待讀者也能以開放的

心態閱讀本書,學成之後可以積極參與開放原始碼活動,力爭為開放原始碼技術貢獻一份力量。  

數值計算進入發燒排行的影片

20200922 商業智慧power BI應用-04.文字數字日期衍生數值計算的資料清理
Power BI,擁有您無法想像的數據分析能力,值得深入探索,掌握數據的內涵。透過幾個簡單的指令,複雜繁瑣的資料,讓你輕輕鬆鬆洞悉資料的內容。本課程將介紹常用的方程式、統計分析、排序、篩選、樞紐分析、圖表呈現、雙軸圖、人口圖,還有趨勢線與預測,保證讓你脫胎換骨,成為數據分析高手。
課程影片、範例、講義、成品都在https://goo.gl/ytzRxT

安全眼鏡之熱殘留應力分析與改善研究

為了解決數值計算的問題,作者李勇震 這樣論述:

摘要 iABSTRACT ii致謝 iii目錄 iv表目錄 viii圖目錄 x1 第一章 緒論 11.1 前言 11.2 研究動機與實驗方法 21.3 論文架構 32 第二章 文獻探討 42.1 文獻回顧 42.2 塑膠射出成型 82.2.1 射出成型機台單元介紹 82.2.2 射出成型核心階段 112.3 塑膠種類 142.3.1 熱固性與熱塑性塑膠 142.3.2 塑膠結晶性質 152.3.3 聚碳酸酯 162.3.4 塑膠PVT圖與成型週期 172.4 塑膠成型品缺陷 182.5 塑膠產品的殘留應力 192.5.1 流動殘留應力 192.5.2 熱殘留應力 202.6 田口實驗工程 2

12.6.1 田口實驗流程 212.6.2 品質特性與理想機能 232.6.3 篩選控制因子與干擾因子水準別 242.6.4 直交表選用 252.6.5 主實驗分析_內外直交表整合 262.7 變異數(ANOVA) 272.7.1 變異數分析 272.7.2 F測試 (F-Test) 292.7.3 確認實驗 292.8 安全眼鏡衝擊試驗規範 313 第三章 研究方法與實驗 323.1 研究架構 323.2 Moldex3D分析前處理 333.2.1 實驗模型 333.2.2 澆口設計 343.2.3 流道設計 353.2.4 模座建置 373.2.5 水路設計 383.2.6 實驗模型網格生

成 393.3 Moldex3D塑膠材料選用 413.4 Moldex3D成型參數建置 433.4.1 初始成型參數設定 433.4.2 感測節點建置 503.4.3 初始成型參數分析結果 513.5 田口實驗設計 533.5.1 品質特性與理想機能 533.5.2 內直交表_主控制因子與水準 533.5.3 外直交表_干擾因子與水準 553.5.4 內外直交表統合_主實驗 563.6 FEA輸出介面 573.7 Abaqus分析前處理 583.7.1 鏡片_衝擊用實體網格 583.7.2 鋼珠_衝擊用實體網格 593.8 Abaqus材料機械性質建立 603.8.1 鏡片_聚碳酸酯(PC)機

械性質 603.8.2 鋼珠_鋼(Steel)機械性質 613.9 Abaqus邊界條件與衝擊參數 623.9.1 分析場域_重力加速度 623.9.2 鏡片_邊界條件 633.9.3 鋼珠_邊界條件與衝擊參數 653.10 Abaqus量測節點位置 663.11 Abaqus相對位置與分析時長 674 第四章 結果與討論 684.1 干擾實驗結果 684.2 主實驗分析 704.3 反應表與反應圖 724.3.1 S/N訊號雜訊比_反應表與反應圖 724.3.2 品質特性_反應表與反應圖 734.4 變異數分析(ANOVA) 744.4.1 S/N訊號雜訊比_變異數分析 744.4.2 品質

特性_變異數分析 764.5 製程參數優化 774.6 確認實驗 784.6.1 實驗與預測值比較 784.6.2 信賴區間計算 794.7 Moldex3D初始與優化參數分析結果 824.7.1 充填分析_流動波前時間 824.7.2 保壓分析_體積收縮率 844.7.3 冷卻分析_溫度 874.7.4 翹曲變形_總位移 904.7.5 熱殘留應力_Von-Mises應力 934.8 Abaqus應力衝擊分析結果 984.8.1 熱殘留應力與衝擊瞬間應力關係 1004.8.2 熱殘留應力與衝擊瞬間位移關係 1015 第五章 結論與未來展望 1025.1 結論 1025.2 未來展望 103參

考文獻 104附錄 107

圖解單元操作

為了解決數值計算的問題,作者吳永富 這樣論述:

  工廠中一系列的製造流程可以被拆解成小單元,分開的個別程序被稱為單元操作。每一種單元操作皆可視為原料輸入再形成產物輸出的程序,在各式各樣的生產流程中,只要基於相同的機制,皆代表同一類單元操作,唯有其規模不同。     工程師在生產技術的發展中扮演重要角色,尤其面臨新製程之設計時,往往只知道原料與產品,對於反應器、產品分離方法、操作條件等議題,皆有待思索,因而需要進行單元操作的設計。之後再思考整體程序,期望能減少步驟,改進個別操作之效率,尋找最適化的流程,最後再將規模放大,從實驗室推廣到試驗廠,再擴大到量產廠。工程師必須整理與研判各種構想和訊息,重複利用單元操作的概念,採用最經濟與最安全的

程序,以建廠製造出產品。單元操作的對象可依物質狀態分為固體、液體和氣體,有時也包含超臨界流體,這些物質必須被輸送、加熱或冷卻,而且需要經歷混合與分離,因此牽涉動量、熱量與質量之輸送。掌握了單元操作的概念,即可奠定工業生產的基礎。本書扼要介紹混合與分散、多相分離、均相分離等單元操作,並闡述其原理、延伸和應用,可作為工程科系學生快速理解製程領域的入門資料。

雙級同軸離心式抽水泵浦之性能改善與模擬分析

為了解決數值計算的問題,作者趙崇臻 這樣論述:

本研究目標為家用雙級同軸離心式泵浦之性能改善,其特點為採用兩級葉輪固定在同軸,故只需要一個馬達並可減少安裝所需空間,但這也使兩級動葉輪間的流道變得十分複雜,離開第一級葉輪的流體必須在極狹窄空間轉180度,再由外圍以徑向往中心進入第二級葉輪入口 ; 另外離開第二級動葉輪的流體也有著相似的情形,必須在短距離轉向才能由泵出口排出,上述問題成為提升泵浦性能及效率時的巨大挑戰。本研究選用CFD軟體Fluent作為分析工具,對同軸離心泵浦做流場聲場的數值模擬,由流場可視化了解內部流場,進一步提出相對應之改善方案,主要的改善對象分為葉輪及流道 ; 首先對靜葉輪和動葉輪進行參數優化,其中靜葉輪考量的參數有入

口角度、葉片擺設方向及葉數,而動葉輪包括葉片角度和葉片數。數值參數分析結果顯示,動葉輪在第一級11葉、第二級8葉、入口角60∘和出口角50∘的參數組合下,其流量在低揚程(5.56m)時增加7.9% (由138到148.9 LPM),於高揚程(24m)時上升67% (由34.8到58.1 LPM) ; 至於效率部份,則在低揚程維持在18.1%,另外高揚程則有顯著提升從45.0%提升到52.9%。接著進行各連接流道部份之改良,包括進口與出口銜接流道的流線化,結果顯示成功地去除流場混亂與局部高壓區,也提升高揚程之流量和效率。最後搭配優化葉輪和改良流道的新泵浦設計,其數值計算結果顯示,於24m的高揚程

操作情形下,其流量可增加到72.8 LPM,為原始設計的2倍多,靜壓效率也再增加4%到56.9%,同時所產生的聲壓分貝值則維持不變。綜合歸納而言,本數值研究成功建立一套系統分析模式,可用來改良泵浦的靜葉輪、動葉輪及流道,且此方法對於雙級同軸離心式泵浦在高揚程時有明顯的效果。